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OBJECTIVE

= Use Partial Differential Equations to model the
heating properties of a 3D Object in Cartesian
Coordinates

= Specifically, we wish to model the cooking process of
a piece of steak in three dimensions
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MOTIVATION

= Precise modeling of temperature propagation in a
three dimensional object allows us to

= make predictions

= optimize the cooking process to minimize time or energy
consumption

= use differential flatness techniques to minimize waste of food
products
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DERIVATION OF 3D HEAT EQUATION IN CARTESIAN

COORDINATES

Rate of internal energy accumulation

Flow of energy into the system

Flow of energy out of the system
+

Rate of energy “generation” of some different source

2 (ka—u)+ : (ka—u)+ & (ka—u)+u=cpp@

ox\ ox 5 ady a 0z dt
c, - Specific Heat Capacity [J/(m3K)]
k - Thermal Conductivity [W/(m K)]
p - Material Density [kg/m?3]
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SEPARATION OF VARIABLES (SOV)

u(x,y,z,t) = (I)(x,y,z)~T(t)

= Plugging into PDE: (c’ﬁp a@ﬁz@)T(t):cp_q)(x,y,Z).m
ox>  dy> 97 k dt
(32¢+32¢ acb)l=£2
x> dy. a7 )® kT
XY 2 ep T o
XYz T

= Solution: (X (x)=A-sin(ux)+ B-cos(ux)
1Y (y)=C-sin(vy)+D-cos(vy) T(t)=G'e Cpl
Z(z) = Esin(yz)+F - cos(yz)
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EXAMPLES FOR IC AND BCs

D={(x,y,z):0sxsxO,OsysyO,OsZSZO}

= Initial condition (t = 0): u(x,y,2,0) = f(x,.2)

= Dirichlet BCs: Yu(x,0,2,0) =u(x,y0,2,1)=0
u(x,,0,1)=u(x,y,x,t)=0
ux(O,y z,t)=ux(x0,y,z t)=0
= Neumann BCs: Y, (x,0,2,8) =u, (x,0,2,1) =0
uz(x y O,t)=uz(x,y xot)=0
= Inhomogeneous BCs: u(yzt)=ug  fu(xgz,0)=u,
Ju(x,0,2,1) =u, Ju(x,y,2,1) = u,,
u(xay’o’t)_uzo \u(x ViZosl)=u, 6/53




SOLUTION TO DIRICHLET BCs

= Using Sturm-Liouville Method

© ©w _Eﬁ{fikﬁ4JZ}
. (max) . (nmy) . (pw el 2 22
u(x,y,z,t)=EEEAmnpsm( )sm(—y)sm(u)e ZARD 20

X0 Yo 4

A -8 fffD[f(x,y,z)sin(m”x)sin(”ﬂ)’)sin(Pnz)
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NUMERICAL APPROACH - FINITE DIFFERENCE

METHOD

= Based on replacing the differentials by algebraic equations
(derivatives by differences)

df(x) f(x+Ax)—f(x)
dx Ax

IR

® Discrete corollaries:

@ Ui Ui @ o Uin — Y,
dx|,_1 Ax dx|,1 Ax
2
du du
— - U —u. U —1u
) dx ‘ l d.x '_l i+1 i i—1
dul "l o Ax Ax  _ Ui —2u; +u;
= 2
dx* l. Ax Ax (Ax)
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PRELIMINARY GEOMETRY - CUBE

= For each time step, we represent temperature at
= Each corner (8)
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PRELIMINARY GEOMETRY - CUBE

= For each time step, we represent temperature at

= Each corner (8)
" The edges (12)
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PRELIMINARY GEOMETRY - CUBE

= For each time step, we represent temperature at
Each corner (8)
The edges (12)
External areas (6)
Internal volume
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NUMERICAL RESULTS

MATLAB/Video...
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DIFFICULTIES ENCOUNTERED

®= Direct analytical solution in MATLAB computationally prohibitive

= PDE Toolbox in MATLAB only capable of modeling one and two
dimensional partial differential equations

= Finite Element Software like Comsol very expensive ($1,700 for
student version)

= Open source modeling software (FEAP) has steep learning curve

= Material parameters (Density, Heat Conductivity) and object
dimension change over time
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FUTURE WORK

= Continue to improve scalability and extensibility of GUI
" Increase number of input parameters
= Implement user-selected views

= Develop differential flathess techniques for higher dimensions

= Derivation of analytical solution for nonzero BCs and
comparing results to Finite Difference Method

= Testing and verification of results based on data gathered
from CE271 project
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THANK YOU.

®Questions?

Disclaimer:
No animal was harmed in the making of this project.
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