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How it Works 

•Put Option: Seller pays a premium for the 
right to sell a quantity of stock at strike price 
from the buyer, buyer is obligated to purchase 

•Call Option: Buyer pays a premium for the 
right to buy a quantity of stock at strike price 
from the seller, seller is obligated to sell 

•American/European styles 

 



Assumptions 

•Constant, risk free interest rate - Merton 

•No fees from buying/selling stock 

•No arbitrage opportunity 

•Possible to buy and sell any amount of stock 

•Underlying security does not pay a dividend 



Assumption: Stocks follow Brownian 
motion with constant drift and 

volatility 
 

 

dS=mSdt+sSdz
S is stock value 
m is expected rate of return 
s is volatility  



Derivation 
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Brownian motion 

Itō’s Lemma 
(differentiate 
time dependent 
function of a 
stochastic 
process) 



Derivation 
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portfolio 

Uncertainty 
W drops out. 

Rate of return on this 
portfolio must be equal to 
the rate of return on any 
other riskless investment 
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Black Scholes Equation 
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V(S,t)=max(S-K ,0)

•V is value of the option 
•S is price of underlying asset 
•r is risk free rate 
•s  is volatility of returns of underlying asset 
•K is strike price 



Solution Process 
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Change of Variables: 

Results in Heat Equation with new Boundary Condition 
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Time to maturity 



Solution Process 
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Self similar solution: 
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Final Solution 
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Where N(•) is the cumulative 
distribution function of the 
normal distribution 



Valuation of Put-AAPL 2012 

Expiration Time, Volatility, and Stock Price Vary 
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Valuation of Put-AAPL 2012 
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European Options 

• May only be exercised at 
expiration date of option 

 

• Utilizes max{S-K,0} for both call 
and put 

 

• Typically over-the-counter stocks 

 

• Follows Black-Scholes model 



American Options 

• Option may be exercised at any 
time 

 

• Securities tend to pay dividends 

 

• American prices generally higher 
because of exercise time 
versatility 

 

• Other algorithms necessary 



Modified Black Scholes 

•Continuous dividends assumed 

–Model accounts for price q 

 

 

 

•Time-Dependent Parameters 

–Rate, volatility change in time 
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Roll-Geske-Whaley Algorithm 

• Option value calculated from BS 
after reducing stock price by 
value of dividend payment 

 

• Recalculated assuming exercise 
before ex-dividend rate 

 

• Larger of the option values is 
used as an estimate of the value. 
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Roll-Geske-Whaley Algorithm 

•New function compares 
values to Black-Scholes 
approximation 
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Comparison of BS, RGW 

• If the deviation of RGW is smaller 
than that of Black-Scholes, then it 
counts as a “win” 
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Conclusions, Further Work 

•Black-Scholes applicable with European Options 

 

•Roll-Geske-Whaley more accurate as dividend 
prices increase 

 

 


