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Motivation

ÅNeed for renewable energy systems adoption is apparent

ÅElectric vehicle sales rising (596k sold in 2013 (US))

ÅSmart phones everywhere (5.2B around the globe)

ÅNeed cost effective, high energy/power/life batteries

ÅCan make better batteries or get more out of current batteries
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Lithium Ion Battery Operation

ÅDischarge:

ïLithium ions flow 

internally from anode 

to cathode

ïElectrons flow 

externally from 

anode to cathode

ïCurrent flows 

externally from 

cathode to anode
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Electrochemical Single Particle Model

Diffusion of Li in Solid Phase (Anode/Cathode):

Boundary Conditions:

Output Voltage:

State of Charge (Bulk Anode):
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Reduced Single Particle Model

ÅModel Simplification:

ïAchieve Model Observability 

ÅApproximate Cathode Diffusion by Equilibrium

ïNormalize in Space and Time

ïState Transformation



Reduced Single Particle Model

Space and Time Normalization:

State Transformation:

Output Voltage:

Diffusion of Li in Solid Phase (Reduced):

Boundary Conditions:

Where:
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Backstepping PDE Observer

Nominal State Estimator plus Boundary State Error Injection:

Initial Condition and Boundary Conditions:

Observer Gains:

Nominal Parameters:

Nominal Solution: Wish to study variations in nominal 

solution via Sensitivity Analysis

Output Function Inversion:
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PDE Observer Sensitivity Analysis

PDE Observer in Partio-Integro Differential Equation (PIDE) Form:

Boundary Conditions and Initial Condition:

Where:



PDE Observer Sensitivity Analysis

Take Partial Derivative wrt.     on both sides:

Initial Condition and Boundary Conditions:

Where:



PDE Observer Sensitivity Analysis

Let:

Initial Condition and Boundary Conditions:

Change Order of Differentiation on RHS (first term):



PDE Observer Sensitivity Analysis

Differentiate wrt. Time:

Initial Condition and Boundary Conditions:

Solution:



PDE Observer Sensitivity Analysis

When:

Then RHS depends only on nominal solution:

Define the Sensitivity Function as:

The Sensitivity PDE is:

Initial Condition and Boundary Conditions:



PDE Observer Sensitivity Analysis

Similarly, define the next Sensitivity Function as:

The Sensitivity PDE is:

Initial Condition and Boundary Conditions:



PDE Observer Sensitivity Analysis

Similarly, define the next Sensitivity Function as:

The Sensitivity PDE is:

Initial Condition and Boundary Conditions:



PDE Observer Sensitivity Analysis

Note that:

Quantify sensitivity of the estimated states to variations in the 

uncertain parameter values
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Sensitivity-Based Interval PDE Observer

When the parameters are close to their nominal values, we approximate the solution to 

the Observer PDE around the nominal solution to first order accuracy as:

Assume parameters are bounded:

Define the interval estimates as:

Interval estimates used to give interval estimates of:



Sensitivity-Based Interval PDE Observer
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Results

ÅPulse Charge/Discharge 

Cycle

ÅObserver system is most 

sensitive to perturbations 

in ɔ(S3), followed by q 

(S2), and finally Ů(S1)

ÅInterval estimates 

encapsulate real values



Results

ÅUDDS Charge/Discharge 

Cycle

ÅObserver system is most 

sensitive to perturbations 

in ɔ(S3), followed by q 

(S2), and finally Ů(S1)

ÅInterval estimates 

encapsulate real values



Results

ÅUDDS/US06/SC04/LA92/

DC1/DC2  

Charge/Discharge Cycles

ÅRank Parameters

ÅVerifies observer system 

is most sensitive to 

perturbations in ɔ(S3), 

followed by q (S2), and 

finally Ů(S1)
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Conclusions

ÅSensitivity analysis showed the effect of the 

parameters on state estimates

ÅParameter ranking useful for system 

identification purposes

ÅSensitivities used for interval estimates on 

battery SOC and voltage

ÅInterval estimates encapsulate real values
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Questions?



Numerical Implementation

Finite Central Difference Method

Let:

Recall Sensitivity PDE:

Initial Condition and Boundary Conditions:

First and Second Order Partial Derivative in Space:

Let First Order Partial Derivative in Time be:



Numerical Implementation

Turn PDE into set of ODEs:

Let:

ODE is now:

The IC is defined as an AE:

The BC is defined as an AE:

Which turns into:



Numerical Implementation

Rearranging the ODEs and AEs:

Where:


