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Abstract— A new Eulerian model of airspace is derived and
applied to high altitude traffic for a full Air Traffic Control
Center of the National Airspace System. The Eulerian model is
reduced to a linear time invariant dynamical system, in which
the state is a vector of aggregate aircraft counts. The model
is validated against ASDI data and applied to the Oakland
airspace. The problem of controlling sector aircraft count is
posed as an Integer Program, in which the dynamical system
appears in the constraints. To improve the computational time
of calculating the solution, the Integer Program is relaxed
to a Linear Program, solved for instances with more than
one million variables. The computational results show that
a high proportion of solutions of the LP are integers. The
computational time is satisfactory for two hour Traffic Flow
Management problems.

I. INTRODUCTION

The almost uninterrupted growth of US air traffic over

the last few decades has motivated the design of a semi-

automated Air Traffic Control (ATC) system to help Air

Traffic Controllers manage the increasing complexity of

traffic flow in the en route airspace. ATC is operated at

the sector level, where a sector is a small portion of the

airspace controlled by a single human Air Traffic Controller.

Traffic Flow Management (TFM) typically deals with traffic

at the Center level, i.e. 10 to 20 sectors. TFM problems

include maintaining the aircraft count in each sector below

a legal threshold in order to ease the human ATC workload,

as well as to ensure the safety of the flights [1]. This task

is quite cumbersome; furthermore, extensive traffic forecast

simulations (including all airborne aircraft) are computation-

ally too expensive to include systematic investigations of

traffic patterns that lead to sector overload. As a result, a new

class of traffic flow models has emerged from recent studies:

Eulerian models, which are control volume based [2]. This is

in contrast to Lagrangian models, which are trajectory-based

and take into account all aircraft trajectories.
Eulerian models have two main advantages over La-

grangian models. (i) They are computationally tractable,

and their computational complexity does not depend on the

number of aircraft, but only on the size of the physical

problem of interest. (ii) Their control-theoretic structure

enables the use of standard methodologies to analyze them.

This article presents a new model, developed jointly with

NASA Ames, demonstrating the two benefits outlined above.
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The seminal Eulerian model proposed for TFM is pre-

sented in Menon et al. [2]. This model is based on a

discretized version of the Lighthill-Whitham-Richards (LWR)

partial differential equation (PDE) [3], [4], inspired by the

Daganzo cell transmission model, which is traditionally used

in highway traffic modeling [5], [6]. The model presented in

[2] has been extended to a stochastic framework [7], [8] to

account for expected aircraft count values. One important

characteristic of the three approaches [2], [7], [8] is the

diffusion that occurs in these models. While this is not a

problem in a stochastic framework (since the results are

in the expected sense), this is more problematic for the

original model [2], since it potentially leads to aircraft losses

or inaccurate predictions (see [9], [10] for more details).

A first attempt to resolve these issues was proposed as a

continuous time continuous space model in [9], [10], based

directly on the LWR PDE. While this approach solves the

diffusion problem, its computational tractability is disputable

(it depends on the required space discretization). We propose

a discrete space discrete time Eulerian model of the airspace

with no diffusion, in the form of an integer linear dynamical

system, which is computationally less expensive.

We first outline the construction of a graph-theoretic model

of traffic flow. Air traffic flow on this graph is modeled as

a discrete time dynamical system (Section II). This model

is validated using Aircraft Situation Display to Industry
(ASDI) data and Future ATM Concepts Evaluation Tool
(FACET) [11]. In particular, we show that the metric of

interest for TFM (aircraft count) is reproduced adequately by

the model (Section III). We then pose the problem of control-

ling aircraft counts in the airspace as a Mixed Integer Linear
Program (MILP), where the dynamical system appears in the

constraints (Section IV), as is traditionally done in optimal

control [12]. Numerical experiments are run to demonstrate

the tractability of these methods for problems involving more

than one million integer variables (Section V). The running

time is improved by relaxing the MILP to a Linear Program
(LP). The computational results show a high proportion of

integer solutions to the LP, appropriate for the application of

interest. The resulting computational time is satisfactory for

two hour Traffic Flow Management problems (a few minutes

for a two hour window).

Our main contribution is thus a new Eulerian model appro-

priate for TFM forecast and actuation. Experiments suggest

that the MILP solution for one million variables is tractable

in real time (a few minutes for two hour TFM). When the

relaxed MILP problem (solved as a LP) is infeasible, our

method provides a guaranteed running time algorithm to

prove infeasibility of the aircraft count control problem.
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II. AUTOMATED MODEL BUILDING

A. Data Aggregation

ASDI data provides flight information for all airborne

aircraft at a given time, updated every minute. It includes

a time stamp and flight data (latitude, longitude, heading,

altitude, etc.).

The objective of automated model building is to construct

a graph-theoretic model of air traffic flow directly from

the ASDI files. Several pattern recognition methods have

been implemented to automatically build a graph model

of the observed flows. The suite of algorithms investigated

includes a variety of techniques, some of them relying purely

on flight tracks, others using additional information that

can be extracted from ASDI data (e.g. flight plan data).

None of these algorithms have provided satisfactory results

for practical purposes, thus leading to another approach

outlined later in this section. We summarize below the several

approaches investigated.

1) K-Means [13]. The K-means algorithm groups data

into clusters defined by “cluster centers” or “cluster

means.” A “cluster center” is the mean of the data

points in that cluster. The algorithm [13] assigns data

points to clusters by finding the nearest cluster mean

and assigning the data point to that cluster. The K-

means algorithm has a time complexity which is linear

in the number of data points.

2) Generalized Principal Component Analysis (GPCA)
Algorithm [14], [15]. GPCA is an algebraic geomet-

ric approach to problems of estimating clusters from

sample data points. GPCA automatically determines

the number of clusters and, unlike [13], does not

need this information a priori. Additionally, the com-

plexity of GPCA is determined by the algorithm’s

identifying the number of clusters and corresponding

basis (characterizing the clusters) and grouping the

data points into the clusters to which they belong. It

does not involve iterative procedures as many other

clustering algorithms do; once the number of clusters

is determined, the complexity of the algorithm is the

cost of solving a linear system of equations.

3) Flight plan based algorithms [16]. A flight goes from

a departure airport to an arrival airport by traveling

through a set of fixes (waypoints). We classify the tra-

jectories based on sequences of waypoints. Waypoint-

based flow pattern classification should be noise-free,

since the trajectory of a flight is defined by strings.

Similarly, we also used jetways as a classification

criteria. Because jetways are similar to highways, they

act as guidelines that the flights should follow. The

flights using the same jetway are supposed to use

similar trajectories.

There are numerous explanations for the failure of all

algorithms above. (i) The mathematical optimum for all

of these methods is not relevant for practical purposes; in

other words, a suboptimal solution might be physically more

relevant than the optimum. (ii) The noise in the data makes

it impossible to classify flows based on proximity, even for

classification criteria involving strings (as is the case for

flight plan information, which consists of acronyms).

In addition to these general considerations, specific rea-

sons prevent the above algorithms from being applicable.

(iii) For example, the K-means algorithm requires a priori
knowledge of the number of clusters, on which we cannot

rely in practice. Furthermore, it is extremely sensitive to an

initial guess, which makes it hard to use in an automated

manner. (iv) Waypoint-based classification is inappropriate

because of the extremely large number of different waypoint

acronyms. Even though this data is noise-free, its size is pro-

hibitive for the present study. (v) Jetway-based classification

is not applicable, since ASDI data does not provide us with

the location of the entry point of an aircraft onto a jetway,

leading to the well-known underconstrained OD estimation

problem in highway traffic [17]. A summary and analysis

of all results obtained with the techniques stated above is

available in [16].

Figure 1. Map of the ZOA (Oakland) Center. Example of Path: A path
in ZOA that a flight follows when it comes from BOS to SFO. It includes
five consecutive links in ZOA; Example of Link: A link in sector ZOA36.

As a result, we developed an algorithm that takes the

geographic structure of the airspace as a starting point

for building the desired air traffic flow graph. ATC sector

frontiers are used as a discriminating boundary to isolate sub-

graphs that are interconnected at nodes along the boundary

(see Figure 1). The subgraphs consist of trajectory clusters

assembled into links or edges. These subgraphs are connected

to each other through the boundaries. Figures 2 and 3 show

the graph by sector-based air traffic flows classification. More

details about the algorithm are provided in [16].

The computational complexity of building the graph is

proportional to the number of links in the network. Given

the structure of the U.S. airspace, this number is itself pro-

portional to the number of sectors (i.e. subgraphs) considered

in the model, since there exists a constant upper bound

to the number of links in one sector, independent from

other parameters of the model. Therefore, the computational

complexity of building the graph is O(nsectors), where nsectors

is the number of sectors considered.
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Figure 2. Flight tracks in Oakland Center and nearby airspace, for 24-hour
of ASDI data.

Figure 3. Graph model constructed by our algorithm to represent the flow
patterns of Figure 2.

B. Distribution of Travel Time

For each link of the graph depicted in Figure 3, we

aggregate the flight times for the seven days of ASDI data.

The mean of this distribution is computed, and its value is

chosen to represent the “time length” of the link, i.e. the ag-

gregated travel time along that link. The data shows that the

distribution of travel time approximately follows a truncated

Gaussian distribution (see Figure 4). It is “truncated” because

flight times can be lengthened by ATC, but in general not

shortened. The expected travel time of a flight through a link

is used to determine the length of the link. In our ATC model,

we divide every link into several cells. The number of aircraft

in a cell will be used as a coordinate of the state in the model

derived below. In the present setting, cells correspond to one

minute of flight time.

Figure 4. Distribution of travel time on one link (ZLC45-ZOA33-ZOA34):
truncated Gaussian.

The complexity of the determination of the graph and the

estimation of the travel time on all links is O(nsectors.ndays),
where nsectors is the number of airspace sectors considered,

and ndays is the number of days of data used for the

estimation. On a 3GHz CPU, 512MB RAM PC running

Linux, model building takes approximately one minute per

day of data, for a network of 20 airspace sectors covering a

tenth of the surface of the continental U.S.

III. MODEL DESCRIPTION AND VALIDATION

A. Model Description

A state space model of air traffic flow is first developed

at the link level, where a link is understood in the graph-

theoretic sense, i.e. an edge of a graph (see Figures 3

and 5). Under the assumption that air traffic flow can be

accurately represented by an aggregated travel time, the

behavior of aircraft flows on a single link can be modeled

by a deterministic linear model with unit time delay, defined

as follows.
xi(k + 1) = Aixi(k) + Bf

i fi(k) + Bu
i ui(k) (1)

y(k) = Cixi(k) (2)

where xi(k) = [xmi
i (k), ..., x1

i (k)]T is the state vector,

whose elements represent the corresponding aircraft counts

in each cell of link i at time step k, and mi is the number

of cells in the link. The [forcing] input, fi(k), is a scalar

which denotes the entry count onto link i during the unit

time interval from k to k + 1, and the [control] input, ui(k)
is an mi × 1 vector, representing delay control. The output,

y(k), is the aircraft count in a user-specified set of cells at

time step k. The nonzero elements of the mi × 1 vector Ci

correspond to the cells in the user-specified set, and are equal

to 1. Ai is an mi×mi nilpotent matrix with 1’s on its super-

diagonal. Bf
i = [0, ..., 0, 1]T is the forcing vector with mi

elements, and Bu
i is the mi ×mi delay matrix, in which all

nonzero elements are 1 on the diagonal and −1 on the super-

diagonal. It is easy to see that, if (1) – (2) is unconstrained,

the system is controllable and observable. However, it is not

the case in practice since only nonnegative integer inputs and

states are allowed (otherwise the model is not physical). An

illustration of the model is shown in Figure 5, for one link.

Figure 5. Illustration of the model of a link as a delay system: everywhere
in the link, xp+1

i (k+1) = xp
i (k), unless some control action was applied.

It is straightforward to extend this modeling technique to

set up a sector level model, for there is no interconnection

(neither inputs, nor states) between different links in one

sector. Suppose there are n links in a sector, then the state

space equations at the sector level are as follows.

x(k + 1) = Ax(k) + Bff(k) + Buu(k) (3)

y(k) = Cx(k) (4)

where x(k) = [xn(k), ..., x1(k)]T denotes the state, and

f(k) = [fn(k), ..., f1(k)]T is the [forcing] input vector, i.e.
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the entry count onto the sector. The [control] input vector

is denoted u(k) = [un(k), ..., u1(k)]T . y(k) represents the

aircraft count in a user-specified set of cells at time step

k. The matrices A, Bf , and Bu are block diagonal, such

that A = diag(An, . . . , A1), Bf = diag(Bf
n, . . . , Bf

1 ),
and Bu = diag(Bu

n, . . . , Bu
1 ). The vector C is given by

[Cn, ..., C1]. The quantities, xi(k), fi(k), ui(k), Ai, Bf
i , Bu

i

and Ci are all defined by Equations (1) – (2). Note that the

system (3) – (4) is also controllable and observable with the

same limitations as (1) – (2).

When a Center level model is created, it is necessary to

include merge/diverge nodes in the network [2], [7], [8], [9].

Merge nodes are straightforward: flows are added as streams

of aircraft merge. For diverge nodes, the corresponding

routing choice must rely on knowledge of aircraft destination.

Several approaches have been proposed to solve this prob-

lem, in particular split coefficients, used by Menon et al. [2],

inspired from the highway transportation literature [6]. We

propose an alternate manner to model this problem, based

on a priori knowledge of the destination of the aircraft

(provided to us by ASDI data). First, flights are clustered

based on their entry-exit node pairs in the network. Each

pair corresponds to a path consisting of links between these

nodes, for example, from ZLC45 to San Francisco (see

Figures 1 and 3). If two or more paths have one link in

common, this link will be duplicated. Therefore, the Center

level model can also be cast in the (3) – (4) framework,

where the matrices A, Bf , Bu and C now include all links

of all sectors, and the corresponding x(k) includes all cells

of the complete network. The [forcing] input, f(k), is now

the entry count onto the considered center. The output, y(k),
denotes the aircraft count in a user-specified set of cells at

time step k. Although this framework requires more space

and computational time, it greatly facilitates the network

model by decoupling the state or input variables around the

merge/diverge nodes.

B. Validation procedure and limit of the model

Validation of the model against ASDI data. A simulation is

performed to validate the model against ASDI data. Sector

ZOA33 (see Figures 1 and 3) is used for the validation.

ASDI data, from 8:00am GMT on January 24th, 2005 to

8:00am GMT on January 25th, is used. The input, f(k), to

the model is the number of aircraft entering the considered

region during the unit time time interval from k to k + 1.

The predicted state is computed from the model for k in the

range above (one minute increments) and compared with the

actual data in the network. The cumulative entry counts for

both simulation results and ASDI data are shown in Figure 6

(top). A comparison of aircraft counts in sector ZOA33 is

presented in Figure 6 (bottom).

Analysis of the results. As is shown in Figure 6 (top), the

two curves match and display the general trends. The largest

difference between them is by eight flights. It is also noted

that the aircraft count is preserved throughout the simulation.

In Figure 6 (bottom), the sector count of our model and ASDI

data differ by noise of a non-negligible magnitude, because

the model uses the expected travel time.

Figure 6. Cumulative entry count onto ZOA33 (top), and comparison of
sector count in ZOA33 (bottom). An animated visualization of the model
validation is available for download at [18].
Correlation coefficient. We calculate the length of threshold

breach, i.e. the summation of time intervals under the con-

dition that sector counts are greater than or equal to a user-

specified capacity limitation, within a certain time window.

S =
k0+Δk∑
k=k0

I{y(k)≥Cs} (5)

where I represents the indicator function. The sector count,

y(k) is defined by (4), and Cs is a user-defined capacity

limitation. The time window we choose in our simulation

is 15 minutes, i.e. Δk = 14. In Equation (5), S can

be computed either using ASDI data (denoted Sdata) or

by the model predictions (denoted Smodel). To measure the

similarity in the length of threshold breach between the

simulation and ASDI data, with different values of Cs, the

relationship between the correlation coefficient and the user-

defined capacity limitation in the specified sector is presented

in Figure 7. The decreasing tendency of the correlation

coefficient against the user-defined capacity limitation is

intuitive: for large values of the limitation, S will only be

non-zero during brief periods and thus Smodel and Sdata will

have no correlation because of the noise in the data. It can be

seen from Figure 7 that the correlation between our model

and ASDI data is above 60% if the user-defined threshold is

less than 12 flights.

Figure 7. Correlation of threshold breach duration vs. aircraft count limit

IV. MILP FORMULATION OF TWO HOUR TFM

A. Formulation
The present section formulates the problem of controlling

the aircraft count in different sectors under a legal threshold
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so that high level TFM actuation can be applied to comply

with FAA standards.

The time horizon of the problem, of the order of magnitude

of two hours, is discretized in N time steps of length τ .

Therefore, τ is the time spent by one aircraft in one cell

in absence of ATC actuation. The state of the system at

time step k∈ {0, · · · , N} is characterized by the number of

aircraft in each cell and represented by the vector xk ∈ R
n,

where n is the number of cells in the network. The control

variables are denoted uk ∈ R
n for k∈ {0, · · · , N}, where

uk represents the number of aircraft held in each cell during

the unit time interval from k to k + 1. The input to the

system at time step k∈ {0, · · · , N} consists of the aircraft

entering the network, and the number of aircraft entering

each cell during the unit time interval from k to k + 1 is

represented by the vector fk ∈ R
n. Note that, unlike in

standard control framework terminology, we do not have

control over the input fk, which is an “exogenous forcing”

from outside the system. Using a traditional optimal control

framework such as in [12], the dynamics (3)-(4) becomes

part of the constraints of the MILP formulation:

min:
∑N

k=0 cT xk

subject to:
Exk + Luk ≤ M, k∈ {0, · · · , N − 1}
xN ∈ χf

xk+1 = Axk + Bffk + Buuk, k∈ {0, · · · , N − 1}
x0 = Bff0

(6)

where χf ⊆ R
n is a terminal polyhedron region, and the ma-

trices E, L, and M represent the constraints on the system:

the sector counts must remain under a legal threshold, the

number of aircraft held in a cell cannot be greater than the

number of aircraft in that cell, and the elements of xk and

uk are non-negative for all k. The objective of the problem

is to minimize the total travel time; therefore, c ∈ R
n is the

vector [τ, τ, . . . , τ ]T .

B. Implementation

In order to solve (6) in practice, we need to encode it in

a computationally efficient manner, which we now present.

Flights are clustered on paths, as explained in section III.

The set P of paths is determined from the data, as well as

the number np of cells along path p ∈ P . The notation for

the state of the system, the input and the control variables is

adapted to take the paths into account. The state is reindexed,

such that xk,p,i now denotes the number of aircraft in cell

i∈ {1, · · · , np} of path p ∈ P at time step k∈ {0, · · · , N}.

The corresponding control variables are denoted uk,p,i, for

k∈ {0, · · · , N}, p ∈ P , and i∈ {1, · · · , np}, where uk,p,i

represents the number of aircraft held in cell i of path p at

time step k. The [forcing] inputs to the system are denoted

fk,p for k∈ {0, · · · , N}, and p ∈ P , where fk,p represents

the number of aircraft entering path p at time step k.

The sector capacity (i.e. the maximum number of aircraft

allowed in the sector) is enforced independently for a set S
of different sectors. These sectors, referred to as capacity-

controlled sectors, have capacities Cs, s ∈ S. The adapted

MILP formulation of the problem is as follows.

min: τ
∑N

k=0

∑
p∈P

∑np

i=1 xk,p,i

subject to:∑
(p,i)∈Is

xk,p,i ≤ Cs, k∈ {0, · · · , N}, s ∈ S

uk,p,i ≤ xk,p,i,
k∈ {0, · · · , N}, p ∈ P, i∈ {1, · · · , np}

xk+1,p,i = xk,p,i−1 + uk,p,i − uk,p,i−1,
k∈ {0, · · · , N − 1}, p ∈ P, i∈ {2, · · · , np}

xk,p,1 = fk,p + uk,p,1, k∈ {0, · · · , N}, p ∈ P
x0,p,i = 0, p ∈ P, i∈ {2, · · · , np}
xk,p,i ∈ Z, k∈ {0, · · · , N}, p ∈ P, i∈ {1, · · · , np}

(7)

where Is is the set of cells (represented by a path p and a

cell number along path p) physically present in sector s ∈ S.

The integrality of the number of aircraft in each cell ensures

the integrality of the number of aircraft held in each cell,

since the inputs to the system are assumed to be integers.

C. LP relaxation of the MILP formulation

Since (7) cannot be solved in polynominal time determin-

istically, it is relaxed to a Linear Program, which is faster to

solve in practice and theoretically polynomial time solvable1.

The relaxed MILP (i.e. the LP) was solved on a sta-

tistical sample of 1,000 different sets of input parameters.

85 percent of the runs lead to an integer solution. For the

remaining 15 percent of the runs, the optimal solution of

the LP (OPTLP) was compared to the optimal solution of

the corresponding MILP (OPTMILP). The integrality gap α
(given by OPTMILP = α · OPTLP) was always smaller then

1.0015. However, the corresponding solutions are fractional,

thus impractical.

On one hand, there is no guarantee of integrality of the

LP solution, but on the other hand, the running time of

computing the MILP solution is not guaranteed. Despite

the flaws of these two approaches, one conclusion can

still be guaranteed from the LP approach: when it returns

no solution, it provides a certificate of infeasibility with

guaranteed running time. Also, given the structure of the

problem, minimizing the total travel time is equivalent to

minimizing the number of delay controls. Therefore, the

number of delay controls provided by the LP solution is the

lower bound of the number of delay controls for which there

may exist a physical solution. In other words, no Air Traffic

Control actuation can enforce the sector count limitations

with less delay than the number of delay controls provided

by the LP relaxation.

V. COMPUTATIONAL RESULTS

We consider two types of control scenarios and three

networks with different sizes. The control scenarios are:

(a) only sector ZOA33 is controlled; (b) sectors ZOA33

and ZOA34 are controlled. The three networks consist of

11, 16 and 21 sectors, respectively. Applying two control

scenarios on each of the three networks, we consider six

types of network structures.

1We did not assess the usefulness of the guaranteed computational
complexity of LP explicitely in the present case. Indeed, the fact that LPs
are polynomial time solvable can only be used with a thorough analysis of
the constant mutiplying the corresponding higher order monomial.
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The optimization programs are solved using CPLEX and

the modeling language AMPL [19]. We compare the mea-

sured CPU time2 for solving the LP and MILP formulations

(see section IV). We run simulations with a time horizon

of two hours. Shifting the time window by 20 minute

increments, we have 67 simulations per day of data, and

the simulations are done for six different days. The statistics

of CPU times are summarized below.

11 sectors 16 sectors 21 sectors
scenario (a) 104 (seconds) 207 (seconds) 222 (seconds)
scenario (b) 147 (seconds) 299 (seconds) 303 (seconds)

Table 1: LP: average CPU time time for different network structures.

11 sectors 16 sectors 21 sectors
scenario (a) 216 (seconds) 442 (seconds) 474 (seconds)
scenario (b) 258 (seconds) 579 (seconds) 597 (seconds)

Table 2: LP: standard deviation (σ) of CPU time

network size (sectors) 11 16 21
Scenario (a)

percentage of instances within 1σ 91.4% 92.0% 91.6%
percentage of instances within 2σ 94.6% 95.1% 95.8%
percentage of instances within 3σ 97.1% 97.0% 97.3%

Scenario (b)
percentage of instances within 1σ 87.8% 90.9% 91.0%
percentage of instances within 2σ 95.4% 95.1% 95.8%
percentage of instances within 3σ 98.1% 98.1% 97.6%

Table 3: LP: percentage of instances within n σ (n = 1, 2, 3).

network size (sectors) 11 16 21
mean CPU time (seconds) 389 522 637

standard deviation (seconds) 2242 1278 2113
percentage within 1σ 98.1% 91.6% 93.9%
percentage within 2σ 98.7% 95.4% 96.2%
percentage within 3σ 99.4% 96.2% 98.5%

Table 4: MILP statistics, with control scenario (a).

From the statistics, we can see that: (i) MILP solutions

require longer CPU time than LP solutions. (ii) Both LP and

MILP are appropriate for real-time optimization: with the

current network structure, the objective function converges

to the optimum within a few minutes (compared to a two

hour time window). (iii) The CPU time increases when the

network structure becomes more complex, i.e. when there are

more sectors and/or more controlled sectors in the network.

A visualization of the control strategies resulting from the

computations is available for download at [18].

VI. CONCLUSION

A new Eulerian model of airspace was derived and applied

to high altitude traffic for a full Air Traffic Control center

of the National Airspace System. The Eulerian model was

reduced to a linear time invariant dynamical system, in

which the state is a vector of aggregate aircraft counts. The

model was validated against ASDI data for the Oakland

Center and applied to two hour Traffic Flow Management

problems. The problem of controlling sector aircraft count

is posed as an Integer Program in which the dynamical

system appears in the constraints. To improve computational

2The simulations are done on a 1.4GHz CPU, 1GB RAM PC running
Linux.

time of the solution, the Integer Program was relaxed to a

Linear Program, solved for instances with more than one

million variables. The computational results showed a high

proportion of integer solutions of the LP, and computational

time satisfactory for two hour Traffic Flow Management

problems relevant for strategic Air Traffic Control.

ACKNOWLEDGMENTS

We are grateful to Dr. Banavar Sridhar for initiating this project, and for his
guidance through this work. We are thankful to Dr. Kapil Sheth and Dr. Shon
Grabbe for fruitful conversations regarding ASDI data and FACET. We want
to acknowledge Larry Hogle for setting up the project through UCSC and
UARC, and Dr. George Meyer for his ongoing support.

REFERENCES

[1] S. DEVASIA, M. HEYMANN, and G. MEYER, “Automation procedures
for air traffic management: A token-based approach,” in Proceedings
of the American Control Conference, Anchorage, AK, May 2002, pp.
736–741.

[2] P. K. MENON, G. D. SWERIDUK, and K. BILIMORIA, “New approach
for modeling, analysis and control of air traffic flow,” AIAA Journal of
Guidance, Control and Dynamics, vol. 27, no. 5, pp. 737–744, 2004.

[3] M. J. LIGHTHILL and G. B. WHITHAM, “On kinematic waves. II.
A theory of traffic flow on long crowded roads,” Proceedings of the
Royal Society of London, vol. 229, no. 1178, pp. 317–345, 1956.

[4] P. I. RICHARDS, “Shock waves on the highway,” Operations Research,
vol. 4, no. 1, pp. 42–51, 1956.

[5] C. DAGANZO, “The cell transmission model: a dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Trans-
portation Research, vol. 28B, no. 4, pp. 269–287, 1994.

[6] ——, “The cell transmission model, part II: network traffic,” Trans-
portation Research, vol. 29B, no. 2, pp. 79–93, 1995.

[7] S. ROY, B. SRIDHAR, and G. C. VERGHESE, “An aggregate dynamic
stochastic model for air traffic control,” in Proceedings of the 5th

USA/Europe ATM 2003 R&D Seminar, Budapest, Hungary, June 2003.
[8] B. SRIDHAR, T. SONI, K. SHETH, and G. CHATTERJI, “An aggregate

flow model for air traffic management,” in AIAA Conference on
Guidance, Navigation, and Control, Providence, RI, August 2004,
AIAA Paper 2004–5316.

[9] A. M. BAYEN, R. L. RAFFARD, and C. J. TOMLIN, “Eulerian network
model of air traffic flow in congested areas,” in Proceedings of the
American Control Conference, Boston, June 2004, pp. 5520–5526.

[10] ——, “Adjoint-based constrained control of Eulerian transportation
networks: application to Air Traffic Control,” in Proceedings of the
American Control Conference, Boston, June 2004, pp. 5539–5545.

[11] K. BILIMORIA, B. SRIDHAR, G. CHATTERJI, K. SHETH, and
S. GRABBE, “FACET: Future ATM concepts evaluation tool,” in
Proceedings of the 3rd USA/Europe ATM 2001 R&D Seminar, Naples,
Italy, June 2001.

[12] F. BORELLI, Ed., Constrained Optimal Control of Linear and Hybrid
Systems, ser. Lecture Notes in Control and Information Sciences. New
York, NY: Springer Verlag, 2003, vol. 290.

[13] M. JORDAN, An introduction to probabilistic graphical models,
Stat241A Class Reader, Univ. of California, Berkeley, book in prepa-
ration.

[14] R. VIDAL, Generalized principal component analysis (GPCA): an
algebraic geometric approach to subspace clustering and motion
segmentation. Univ. of California, Berkeley: PhD thesis, August 2003.

[15] R. VIDAL, Y. MA, and S. SASTRY, “Generalized principal component
analysis (GPCA),” in IEEE Conference on Computer Vision and
Pattern Recognition, Madison, WI, June 2003, pp. 621–628.

[16] C. A. ROBELIN, D. SUN, G. WU, and A. M. BAYEN, “Strategic
traffic flow models based on data-mining and system-identification
techniques,” NASA Technical Memorandum, in preparation, 2006.

[17] S. R. HU, S. MADANAT, J. KROGMEIER, and S. PEETA, “Estimation
of dynamic assignment matrices and OD demands using adaptive
Kalman filtering,” Intelligent Transportation Systems, vol. 6, pp. 281–
300, 2001.

[18] http://www.ce.berkeley.edu/∼bayen/acc06/,
at the time of submission.

[19] R. FOURER, D. M. GAY, and B. W. KERNIGHAN, AMPL: A
Modeling Language For Mathematical Programming. Duxbury
Press/Brooks/Cole Publishing Company, 2002.

5262

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 3, 2009 at 13:24 from IEEE Xplore.  Restrictions apply.


