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Abstract—We develop an algorithm aimed at estimating travel
time on segments of a road network using a convex optimiza-
tion framework. Sampled travel time from probe vehicles are
assumed to be known and serve as a training set for a machine
learning algorithm to provide an optimal estimate of the travel
time for all vehicles. A kernel method is introduced to allow for
a non-linear relation between the known entry times and the
travel times that we want to estimate. To improve the quality
of the estimate we minimize the estimation error over a convex
combination of known kernels. This problem is shown to be
a semi-definite program. A rank-one decomposition is used to
convert it to a linear program which can be solved efficiently.

I. INTRODUCTION

Travel time estimation on transportation networks is a

valuable traffic metric. It is readily understood by practi-

tioners, and can be used as a performance measure [3] for

traffic monitoring applications. Note however that the travel

time estimation problem is easier to address on highways

than on arterial roads. This can be intuitively interpreted

by the fact that properties of highways can be considered

to be ‘more spatially invariant’ than the ones of arterial

roads. Indeed the latter present complex features such as

intersections and signalization forcing to stop resulting in

spatially discontinuous properties. In this article, we propose

a new method to estimate travel time on road segments

without any elaborated model assumption. This method is

shown to belong to a specific class of convex optimization

problems and provides a non-linear estimate of the travel

time. The kernel regression method introduced allows for

estimation improvement through the online extension of the

set of kernels used. In particular, we assess the performance

of this technique through a rank one kernel decomposition.

Highway traffic modeling is a mature field. Macroscopic

models date back to [10], [16], [22] and usually fall under the

theory of scalar conservation laws [9]. Microscopic models

take into account vehicle driving behaviors and can be

derived from the car-following model [17]. Flow models and

driving behavior models on arterials are still the focus of

significant ongoing research.
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Sensors such as loop detectors are widely available on

highways. They provide accurate measurements of density

or speed [13], but are extremely sparse on arterials. Thus

hardly any information of arterial traffic is available in real-

time. It is only recently that the growth of mobile sensors

has been shown to offer reliable information for traffic

monitoring [12], [29]. One can hope to use this source of

information to provide accurate estimate of travel time on

arterials.

Travel time estimation on highways has been investigated

with different tools. Efforts have been made from the model-

ing side, assuming local knowledge of density or speed, and

producing an estimate given by a deterministic or stochastic

model [5], [14], [20]. This problem has also been addressed

using data analysis and machine learning techniques with

various types of learning methods [18], [19], [21], [28], [30].

Arterial travel time estimation is more complex because

the continuum approximation of the road might not apply at

intersections, where the dynamics is not easily modeled [1].

Information about the state of traffic on arterials is also lim-

ited because of the sparsity of sensors. Some attempts have

been made to estimate travel time on arterials, but in practice

it is not always possible to know the traffic lights cycles or

to obtain a dedicated fleet of probe vehicles, often needed

for estimation [24], [25]. However the ubiquity of GPS now

enables one to realistically assume the knowledge of sampled

travel times, an assumption for example verified in sections of

Northern California with the Mobile Millennium system [11].

We propose to focus on arterial travel time estimation

using machine learning techniques and convex optimization.

We use kernel methods [23] to provide a non-linear estimate

of travel time on an arterial road segment. We assume the

knowledge of the travel times of a subset of vehicles and

estimate the travel time of all vehicles. We use convex

optimization [2] to improve the performance of the non-linear

estimate through kernel regression. The regression is done

on a set of kernels chosen according to their usually good

performances, or physical criteria. The kernel framework [6]

enables the addition of features to the set of covariates in the

regression problem. The kernel regression gives the possibil-

ity to select the most relevant features via optimization.

This article is organized as follows. In section II, we

describe the optimization problem, introducing the regular-

ization parameter and the kernel in a learning setting. In

section III, we pose the kernel regression problem and show

that it can be written as a convex optimization problem,

transform it into a linear program, which can be solved

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThB05.4

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 4360



efficiently and we describe the general learning algorithm

used. In section IV, we present the simulation dataset used

for validating the method and the results obtained. In par-

ticular, we discuss the theoretical results stating that kernel

regression enables to obtain a better estimate on the validation

set. Finally, based on these results, we enumerate in section V

ongoing extensions to this work.

II. PROBLEM STATEMENT

A. Travel time estimation

We investigate travel time estimation for a given road

segment. Assuming a set of entry times and travel times on

the section, we apply machine learning techniques to use

the knowledge of a subset of the pairs entry time, travel

time, in order to produce an estimate of travel time for every

entry time. The dataset used for validation is described later

in section IV-A. We assume the knowledge of a dataset of

size N which reads S = {(xi, yi) ∈ R
+ × R

+|i = 1 · · ·N}
where for each value of the index i = 1 · · ·N , xi is an entry

time on the road section and yi is the realized travel time

(known as the a-posteriori travel time in the transportation

community) for entry time xi. We would like to learn a

function h : R
+ → R

+ which given S, would provide an

estimate of the travel time y for any x ∈ R
+. This is a

typical regression problem as described in [6]. The well-

known unconstrained least-squares method can be formulated

as an optimization problem:

minθ ‖y − xT θ‖2
2 (1)

where y ∈ R
N×1 is the vector of realized travel time or

output, xT ∈ R
N×1 is the vector of entry time or input. One

must note that here x is a row vector and y is a column vector

so θ is a scalar. The well-known solution of this problem can

be computed as:

θopt = (xxT )† x y (2)

where the notation (xxT )† denotes the pseudo-inverse

of (xxT ) and the optimal estimate is given by ŷ =
(xxT )† xT x y. This estimate does not have bias, i.e. the

mean of the output y equals the mean of the estimate ŷ.

B. Regularization

The regression problem defined in (1) is often ill-posed

in the sense that the solution does not depend continuously

on the data (the case of multiple solutions falls into that

denomination). Formulation (1) could also lead to over-

fitting in the case of non-linear regression since there is no

penalization for high values of the solution θopt. In order to

prevent these two possible flaws, it is a common practice to

add to the objective function a quadratic term called Tikhonov

regularization [26] which has the form ρ2 |θ|2 in the scalar

case. Then the optimal estimate becomes:

ŷ = (xxT + ρ2 I)−1 xT x y. (3)

For ρ large enough, the problem is well-posed and over-fitting

with respect to θ is prevented [8].

C. Kernel methods

The regression method described in section II-A in the

linear case can be extended to the non-linear case through

the use of a kernel. One can consider a mapping function

φ(·) and consider the linear regression problem between the

mapped covariates φ(xi) and the outputs yi. This is the

main principle of kernel methods, which consist in using

a feature space, in which the dataset is represented, and

to consider linear relations between objects in this feature

space, and between these features and the outputs. Given a

positive semi-definite matrix K = (kij), we define the kernel

function by Kf : X × X → R such that Kf(xi, xj) = kij .

This implicitly defines a feature mapping φ(·) between the

input set X and a Hilbert space H by φ(·) : X → H such

that 〈φ(xi), φ(xj)〉H = Kf(xi, xj). In the following we note

Xmap a matrix representation of the mapping φ(·) (thus the

i-th column of Xmap is φ(xi)). When φ(·) has scalar values,

Xmap is a row vector.

Remark 1: One does not have to define a mapping func-

tion φ(·) to define a kernel matrix, but can simply consider a

positive semi-definite matrix and use it as a kernel. It is also

possible to define a kernel matrix from a mapping φ(·) and

one of its matrix representation Xmap as K = XT
map Xmap.

The inner product in H naturally appears to be given by

the Gram matrix K , called the kernel. Kernel techniques [6],

[23] have several benefits:

• They enable to work with any types of features of the

initial data-set, which has a priori no particular structure,

in a Hilbert space.

• They guarantee a reasonable computational cost for

the algorithm by allowing a complexity related to the

number of points represented and not the number of

features used (this is known as the kernel trick and is

described in Remark 4).

Thus, kernel methods provide several extensions to usual

regression methods, and can be easily written in a machine

learning framework.

D. Learning setting

We assume the knowledge of a training set

Str = {(xi, yi)|i = 1 · · ·ntr} and we look for

the best estimate of the elements of the test set,

St = {xi|i = ntr + 1 · · ·ntr + nt}. In order to match

the structure of this problem, we define the kernel matrix in

block form as:

K =

(

Ktr Ktrt

KT
trt Kt

)

(4)

where kij = 〈φ(xi), φ(xj)〉H for i, j = 1 · · ·ntr, ntr+1...ntr+
nt. The Gram matrix Ktr is the result of an optimization

problem over the training set, and we learn the cross-term

Ktrt, which expresses the inner-product in the feature space
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between the elements of the test-set and the elements of the

training set. Kt is the inner product between the elements of

the test set.

III. ANALYSIS

A. Convex formulation

Expressing the linear least-squares (1) for the mapped

input Xmap with the regularization term described in sec-

tion II-B yields:

p∗ = minθ ‖y − XT
map θ‖2

2 + ρ2 ‖θ‖2
2 (5)

where we note p∗ the optimal value of this problem. Using

the change of variable z = XT
map θ − y yields the equivalent

formulation:

p∗ = minθ,z ‖z‖2
2 + ρ2 ‖θ‖2

2 (6)

subject to z = y − XT
map θ (7)

The lagrangian dual of this problem reads:

d∗ = maxα − 2 αT y − αT

(

I +
XT

map Xmap

ρ2

)

α. (8)

In this equation, we see the expression of the kernel matrix:

K = XT
map Xmap. (9)

If we denote Kρ = I +
XT

map Xmap

ρ2 the regularized kernel, the

dual optimal point and dual optimal value of problem (8) can

be expressed as:

α∗ = K−1
ρ y and d∗ = yT K−1

ρ y. (10)

Remark 2: Since the primal (6)-(7) and dual (8) are con-

vex and strictly feasible, strong duality holds and primal

optimal value p∗ and dual optimal value d∗ are equal. We

note that expression (8) shows that the dual optimal value

is a maximum over a set of linear functions of Kρ, so the

optimal value is a convex function of the regularized kernel

matrix Kρ. Since the choice of the kernel is crucial for the

optimal value it is interesting to minimize the optimal value

d∗ with respect to the kernel.

Remark 3: Optimizing the kernel matrix physically means

looking for the best mapping function φ(·) such that there

is a linear relation between the features of the inputs φ(xi)
and the outputs yi. If one takes φ(·) as the identity mapping,

then the optimal value of (8) becomes:

yT K−1
ρ y = yT

(

I +
xT x

ρ2

)−1

y (11)

which may not be optimal for non-linear systems.

Remark 4: One must note that the kernel matrix (9) is a

square matrix which has the dimension of xT x, and thus its

size does not depend on the number of features represented in

Xmap but only on the number of covariates xi. The dimension

of the image space of φ(·) which is the dimension of the

feature space, does not appear in the kernel matrix. This is

the kernel trick mentioned in section II-C.

B. Cross-validation

The optimal value of (5) as expressed in (10) depends

on the kernel matrix (9) and on the regularization param-

eter ρ. The parameter ρ is tuned through a re-sampling

procedure [7], the k-fold cross-validation (here k does not

denote the kernel matrix but the number of folds used

in the cross-validation method). This technique consists in

dividing the dataset into k parts of approximately equal

size, and using a subset for training while the remainder is

used for testing [27]. For instance if the different parts are

{Pi|i = 1 · · ·k} then given n ∈ {1 · · ·k} one would use Pn

as a training set and
⋃

i=1···k, i6=n Pi as a test set. This is

useful to make extensive use of the dataset while avoiding

bias on the training set. Here we use this method on the

training set to pick the optimal value of the regularization

parameter ρ and on the whole set to have a meaningful

estimation error.

C. Kernel regression

As stated in Remark 2, the optimal value of the regularized

regression problem (5) is a convex function of the regularized

kernel matrix Kρ and can be optimized over the kernel. The

kernel optimization problem, which consists in minimizing

the value d∗ defined in (10) with respect to the regularized

kernel Kρ reads:

minKρ
yT K−1

ρ y (12)

subject to Kρ ≥ 0 (13)

where the constraint on the kernel matrix enforces that the

regularized kernel Kρ must be a Gram matrix. This problem

is convex according to Remark 2. In order to prevent over-

fitting with respect to Kρ, we follow [15] and constrain Kρ

to be a convex combination of given kernels, i.e. we define

a set of kernels {K1 · · ·Kk} and consider the problem:

minλ yT K−1
ρ y (14)

subject to λi ≥ 0

k
∑

i=1

λi = 1 (15)

Kρ =

k
∑

i=1

λi Ki. (16)

In a learning setting, the optimization problem (14) is defined

only on the training set but the expression of the kernel

matrix as a linear combination of known kernels must be

satisfied on the whole set. Using the notation introduced in

section II-D we write Kρ =

(

Ktr Ktrt

KT
trt Kt

)

and under this

form the problem reads:

minλ yT K−1
tr y (17)

subject to λi ≥ 0
k
∑

i=1

λi = 1 (18)

Kρ =

k
∑

i=1

λi Ki (19)
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which can be written in a semi-definite program form using

an epigraph property and the Schur complement:

minλ,t t (20)

subject to λi ≥ 0

k
∑

i=1

λi = 1 (21)

Kρ =

k
∑

i=1

λi Ki and

(

t yT

y I + Ktr

ρ2

)

≥ 0. (22)

The solution of this optimization problem is the parameter λ∗

giving the optimal convex combination of the set of kernels

{K1 · · ·Kk} which minimizes d∗ from (10).

D. Rank-one kernel optimization

The kernel optimization problem in the form of (20)-

(21)-(22) is not tractable and cannot be efficiently solved

by standard optimization software. In this section we use

the rank-one decomposition of kernels to find an equivalent

formulation in a linear program form. This is done through

the introduction of several intermediate problems. We assume

that we can write the regularized kernel as a convex combi-

nation of dyads: Kρ =
∑p

i=1
νi li lTi where li are row vectors

and νi are positive scalars such that
∑p

i=1
νi = 1. Since by

definition Kρ = I + K
ρ2 , the decomposition of Kρ into a

sum of dyads is possible whenever the kernel K itself can

be written as a sum of dyads. In practice the kernel is a

positive semi-definite matrix so it can be diagonalized in an

orthonormal basis and this property is satisfied. Thus we can

write an equivalent formulation of problem (14)-(15)-(16) as:

Ψ = minν yT K−1
ρ y (23)

subject to νi ≥ 0

p
∑

i=1

νi = 1 (24)

Kρ =

p
∑

i=1

νi li lTi (25)

where the vectors li are the eigenvectors of the matrices Kj

from equation (16). Introducing the change of variable κ =
K−1

ρ (ν) and doing some computations enables one to rewrite

problem (23)-(24)-(25) as:

Ψ = maxκ

(

2 yT κ − max
1≤i≤p

(lTi κ)2
)

(26)

and the optimal κ is related to the optimal ν by the relation

κ∗ = K−1
ρ (ν∗). (27)

One can note that solving problem (26) for the vector variable

κ is the same as solving the problem:

Ψ = minγ,β

(

2 yT γ β − max
1≤i≤p

(lTi γ β)2
)

(28)

for the variables γ and β. This is simply obtained by writing

κ = γ β in problem (26), with γ scalar and β vector. The

optimal point (γ∗, β∗) of problem (28) satisfies:

Ψ1/2 β∗ = γ∗ β∗ = κ∗. (29)

If we minimize over γ in (28) we obtain the following

optimization problem:

Ψ1/2 = maxβ yT β (30)

subject to |lTi β| ≤ 1 i = 1...p. (31)

The lagrangian of this problem can be written as:

L(β, u) = yT β +

p
∑

i=1

(

|ui| − ui

(

lTi β
))

(32)

and taking the lagrangian dual of problem (30)-(31) yields:

Ψ1/2 = minu ‖u‖1 (33)

subject to y =

p
∑

i=1

ui li (34)

using the strict feasibility of the primal and convexity of the

primal and the dual. Problem (34) is a linear program. The

optimal ν∗ can be retrieved from the optimal u∗ from the

relation:

ν∗
i =

|ui|
∗

Ψ1/2
. (35)

Indeed one can check that with this value of the vec-

tor ν equations (27)-(29) yields Ψ1/2 Kρ(ν
∗)β∗ = y

and on the other hand we can write Ψ1/2 Kρ(ν
∗)β∗ =

∑p
i=1

|u∗
i | (l

T
i β) li which is equal to

∑p
i=1

ui li using the

optimality condition in the lagrangian (32). This proves that

if u∗ is optimal for (33)-(34) then ν∗ given by (35) is optimal

for (23)-(24)-(25) and vice-versa.

E. Choice of kernels

Several types of kernels are commonly used in machine

learning [23]. Here, we propose to combine several classical

kernels with a kernel motivated by the known physical

properties of the phenomenon we want to estimate.

1) Classical kernels: We consider a Gaussian kernel Kσ

defined by kσ
ij = exp(−

|xi−xj |
2

σ2 ). We also use a linear

kernel K lin defined by klin
ij = xi xj . Since we use a rank-

one decomposition of each kernel, the regression problem

with the linear kernel K lin is expected to produce a slightly

better estimate than the regular linear least-squares, because

in the kernel method the weight of the eigenvectors can be

different.

2) Physics of the phenomenon: Since we are interested in

estimating the travel time across a traffic light intersection,

we consider the physical properties of this phenomenon as

described in [1]. According to the authors, a reasonable

model is the following: the travel time across a traffic light

intersection increases suddenly at the beginning of the red

light and decreases linearly from there until the next begin-

ning of the red light. This motivates us to use a piecewise
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linear function φ(·) as a mapping. In order to do so we

assume the traffic cycle length to be constant of value c.

The slope of the linear function is left free and is chosen

to be an optimization parameter. These considerations lead

us to define the mapping function for the third kernel as

φphy(x) = x mod c where c is the traffic cycle length. It

is motivated by the fact that according to the model the

phenomenon is periodic of period c, and on a period the

relation between the entry time and the travel time is linear.

We assume that c = 60 seconds.

IV. SIMULATION RESULTS

A. Dataset description

We use a dataset generated by a traffic micro simulator,

Paramics [4]. It is based on the car-following theory and

driving behavior modeling and has been the subject of exten-

sive research funded by Caltrans. It is assumed to accurately

reproduce the macroscopic properties of traffic as well as

inconsistent driving patterns observed in real life. Thus it

provides a challenging dataset to estimate the performance

of our algorithm. The dataset consists of 1055 pairs (xi, yi)
where xi is an entry time and yi is the travel time of a

vehicle entering the road section at time xi. This dataset has

been generated for a road segment in Berkeley, California.

It consists of an arterial link of length 1207 feet and the

simulation has been run for half an hour between 3 : 30 PM

and 4 : 00 PM on a week day.

B. Analysis method

Given an entry time xi, we would like to provide a travel

time estimate ŷi. We are interested in the quadratic error

between this estimate ŷi and the effective travel time yi. In

order to evaluate the performance of the techniques described

in section III, we follow the method described below. The

error metric used is a L2 relative norm.

• We consider a training set whose size is one half of the

size the whole dataset. This can be considered to model

the fact that we know one half of the travel times of

vehicles flowing on the road section, and we want to

estimate the travel time of the other vehicles.

• In order to define the optimal regularization parameter

for the training set, we define a 5-fold on this set. We

use cross-validation as defined in section III-B on this 5-

fold. Namely we use one of the five subsets as a training

set, and the remainder serves as the test-set. We solve the

optimization problem described in section III on each of

the five training sets, and for several values of ρ, and

we pick the one which minimizes the error metric.

• Having defined a regularization parameter at the previ-

ous step, we compute the optimal weight vector from

the training set and evaluate the error on the test-set.

• We iterate this method for different training sets being

in size one-half of the whole dataset, and we average

the errors obtained. The results are given in Table I for

different convex combinations of kernels.

These computations are executed with Matlab, and the opti-

mization problems are solved by CVX, which is a disciplined

convex programing tool, using the program SDPT3.

C. Results and discussion

Kernel Error on training set Error on test set

K lin 1.09 1.10

Kphy 1.07 1.09

Kσ 0.79 0.76

K lin + Kphy 1.07 1.10

K lin + Kσ 0.79 0.76

Kphy + Kσ 0.77 0.74

Table I
VALUES OF THE L2 RELATIVE ERROR ON THE TRAINING SET AND ON

THE TEST SET FOR DIFFERENT COMBINATIONS OF KERNELS, FOR A

TRAINING SET OF SIZE 50 % OF THE SIZE OF THE WHOLE DATASET. WE

NOTE Kσ THE GAUSSIAN KERNEL AND USE σ = 100, KLIN THE LINEAR

KERNEL, AND KPHY THE PHYSICAL KERNEL.

The results shown in Table I yield several observations.

First, the high value of the relative errors must be compared

to usual techniques, such as the conventional linear least-

squares. For this dataset, the linear least-squares optimal

estimate gives a L2 relative error of 1 on the training set,

because it produces an estimate without bias. The error on

the test set is as close to 1 as the distribution of the training

set is close to the distribution of the test set. When using

only one kernel, the estimate performs at least almost as well

as the linear least-squares estimate. The performance of the

combination of kernels is at least as good at the performance

of the best kernels, and is better when the two kernels have

different features. In the case of a Gaussian kernel and a

physical kernel, the result is improved because the physical

kernel uses a feature (the operator mod) which does not exist

in the Gaussian kernel. In the case of the linear kernel and

the Gaussian kernel, there is no added value compared to

the Gaussian kernel alone. The benefit of a combination of

kernels is that if one does not know a-priori which kernel

performs better, the optimization algorithm picks an optimal

combination and yields a mixed non-linear estimate which, as

illustrated in figure 1, is able to locally capture trends of the

phenomenon. This property of the estimate does not appear

in the comparison proposed in Table I but is really useful for

traffic applications. Here the linear least-squares estimate has

a constant value at the mean value of the dataset, whereas

the estimate given by a combination of the kernels oscillates.

This is the subject on ongoing research which uses the same

formalism with other norms such as the H1 norm instead of

a L2 norm in the objective function of (5).

V. CONCLUSIONS AND FUTURE WORK

The result presented in previous sections show that even

if the accuracy obtained by the kernel regression technique

is not spectacular, an added value is the fact that the

estimate is able to follow the trend of the travel time.
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Figure 1. Observed travel times (blue sparse points) and estimated travel
times (red smooth curve) for a linear combination of a Gaussian kernel (with
σ = 100) and a linear kernel.

The kernel regression technique enables to add kernels to

the set used in order to provide a richer signal providing

better accuracy. Thus extensions to this work include the

use of different kernels offering other features to improve

the results obtained. In particular, it would be satisfying to

reach sufficiently good estimation accuracy with kernels only

based on the physical properties of the road and some varying

parameters (weather, time of day). Applying results from the

support vector machines theory allowing to bound the error

in classifiers would significantly improve the quality of our

travel time estimate. The estimated travel time on a road

segment may be as important for practitioners as its range of

variations. This is related to the discussion in section IV-C

on the ongoing research focusing on the use of other norms

in the regression problem (5), and how to find a tractable and

efficient way to solve the problem in these cases.
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