
PmeeedIng of the 41st IEEE
Conlerenee on Decision and Control
Las Vfgas, Nevada USA, December MO2 WeMO -5

Hybrid Verification of an Interface for an Automatic
Landing’

Meeko Oishi, Ian Mitchell, Alexandre Bayen, Claire Tomlin
Hybrid Systems Lab, Stanford University, Stanford, CA

moishi,imitchell,bayen,tomlinQstanford.edu

Asaf Degani
NASA Ames Research Center, hloffett Field, CA

adeganiQmail.arc.nasa.gov

Abstract

Modern commercial aircraft have extensive automation
which helps the pilot by performing computations, ob-
taining data, and completing procedural tasks. The
pilot display must contain enough information so that
the pilot can correctly predict the aircraft’s behavior,
while not overloading the pilot with unnecessary in-
formation. Human-automation interaction is currently
evaluated through extensive simulation. In this pa-
per, using both hybrid and discreteevent system tech-
niques, we show how one could mathematically verify
that an interface contains enough information for the
pilot to safely and unambiguously complete a desired
maneuver. We first develop a nonlinear, hybrid model
for the longitudinal dynamics of a large civil jet air-
craft in an autoland/go-around maneuver. We find the
largest controlled subset of the aircraft’s flight envelope
for which we can guarantee both safe landing and safe
go-around. We abstract a discrete procedural model
using this result, and verify a discrete formulation of
the pilot display against it. An interface which fails
this verification could result in nondeterministic or un-
predictable behavior from the pilot’s point of view.

1 Introduct ion

One of the key enabling technologies for increased au-
tomation in human-machine systems is verification,
which allows for heightened confidence that the sy5
tem will perform as desired. To verify system safety,
the safety specification is first represented as a desired

’Research supported by a National Science Foundation Grad-
uate Research Fellowship, by DAWA under the Software En-
abled Control Program (AFRL contract F33615-9%C-3014),
by the DoD Multidisciplinary University Research Initiative
(MUM) program administend by the Office of Naval Research
under Grant N00014W1-0637, and by Grant NCC2-798 from
NASA Ames Research Center to the San Jose State Univemity
Foundation, a5 part of NASA’s base research and technologv ef-
Sort, human-automation theory subelement (RTOP 54840-12).

0-7803-7516-5/02/$17.00 a 0 0 2 IEEE 1607

subset of the state space in which the system should
remain. The process of verifying safety then involves
computing the subset of the state space which is back-
wards reachable from this “safe set” of states; if this
backwards reachable set intersects any states outside
the desired region, then the system is deemed unsafe.
We can restrict system behavior by pruning away sys-
tem trajectories which lead to unsafe states, to synthe
size a controller which, if enforced, guarantees safety.

In the past several years, a method 111 and a numerical
tool 12, 31 have been developed for verifying the safety
of hybrid systems. Previous work, for example 141, has
focused on applications of hybrid system theory to fully
automated systems, assuming that the controller itself
is an automaton. Here we consider the problem of con-
trolling semi-automated systems, in which the automa-
ton and a human controller share authority over the
control of the system 151. In particular, we consider
the problem of verification of an interface between a
semi-automated hybrid system and a human controller,
and we pose the question: Is the information displayed
to the human controller about the hybrid system euolu-
tion suficient for the human controller to act in such
a way that the system =mains safe? We consider this
problem within the framework of an example: the au-
tomatic landing system (autoland) of a large civil jet
airliner.

The antoland system of modern aircraft is one of the
most safety-critical components, and is subject to strin-
gent certification criteria [61. Modeling the aircraft’s
behavior, which incorporates logic from the autopilot
as well as inherently complicated aircraft dynamics, re-
sults in a high-dimensional hybrid system with many
continuous and discrete states. Most of the informa-
tion is abstracted away, so that only a subset of this
information is displayed to the pilot. Here, we are in-
terested in verifying that the cockpit interface provides
the pilot with enough information so that the pilot can
safely land or safely go-around.

http://moishi,imitchell,bayen,tomlinQstanford.edu
http://adeganiQmail.arc.nasa.gov

2 Problem Description

In a typical autoland maneuver (Figure l), the aircraft
descends towards the glideslope, an inertial beam which
the aircraft can track. With the landing gear down,
the pilot sets the flaps at FlapsZO, the first high-lift
configuration in the landing sequence. After capturing
the glideslope signal, the pilot increases flap deflection,
stepping through both Flaps-25 and Flaps-30 by the
time the aircraft reaches 1000’ altitude. Near 50’, the
aircraft leaves the glideslope and begins a flare maneu-
ver, which allows the aircraft t o touchdown smoothly
on the runway with an appropriate descent rate.

If for any reason the pilot or air traffic controller deems
the landing unacceptable (debris on the runway, a pc-
tential conflict with another aircraft, or severe wind
gusts, for example), the pilot must initiate a gc-around
maneuver. A guaround can be initiated anytime after
the glideslope has been captured and before the aircraft
touches down. Pushing the gc-around button engages a
sequence of events designed to make the aircraft climb
as quickly as possible to a dialed-in missed-approach
altitude which the pilot usually sets to 2500’.

2.1 Aerodynamic Characterist ics
The phases of landing and gc-around correspond to
fundamentally different operating conditions of the air-
craft. We model the nonlinear longitudinal dynamics
of a large civil jet aircraft by 5 = f,(z, U), in which the
state z = [V, 7 , h] E R3 includes the aircraft’s speed V,
flightpath angle 7 , and altitude h (see [IS]):

(1)
I -D(a, V) + Tcos a - mgsin y

V sin y
[;:I=[L(u, V) + T sin a - mg cosy

We assume the control input U = [T,a], with air-
craft thrust T and angle of attack a. The aircraft
has mass rn = 190000 kg, pitch 0 = a + y, and
gravitational acceleration is g = 9.81 m/s2. The air-
craft’s lift L(a, V) = i p V z S C ~ (a) and drag D(a, V) =
i p V Z S C ~ (a) depend on air density p = 1.225 kg/m3,
wing surface area S = 427.80 m2, and the coefficients
of lift and drag, CL(^) = CL, + CL-^ and C D (~) =
CD, + KC;(a). The constants C,, , CO,, and K were
determined for the particular combinations of flap set-
tings and landing gear in an autoland/gearound sce-
nario [18, 19, 20, 21, 221 (Table 1). CL,, = 5.105 in all
modes.

2.2 Procedural Automaton
The discrete modes of our hybrid system result from
the combination of aircraft dynamics and autopilot
modes. We formulate a hybrid procedural model based
on landing/gc-around procedures a pilot is trained to
follow. We focus on a small part of the autoland p r o
cedure, beginning with the flare maneuver.

Figure 1: Typical landing scenario.

The pilot’s “user model” of the autoland system, based
on the pilot’s display, manuals, training, and personal
experience, is necessarily different from the complete
aircraft “truth model” [7]. Discrepancies between these
models can result in mode confusion, a potentially un-
safe situation in which the system does not behave as
the pilot anticipates [5, 8, 91. Although the human
factors community has historically dominated research
on human-automation interaction [9, 10, 11, 121, there
have recently been efforts by the formal methods com-
munity [7, 13, 14, 15, 161 as well as system and control
communities [I71 to address these safety-critical prob-
lem. We build our methodology based on [7], in which
user-interfaces are verified for a given task. In [7] the
hybrid plant model is represented as an abstracted dis-
crete system in which the system dynamics are mod-
el& as plant-triggered (dynamic) transitions. It is not
shown there how the discrete representation with its
dynamic transitions are derived. In the present work,
we represent the plant model as an explicit hybrid sys-
tem and show how, with the aid of a control component,
the detailed transformation into the equivalent discrete
representation is performed.

In this paper, we first develop a model of longitudi-
nal aircraft dynamics in high-lift configurations used
during a landing/guaround procedure. Using a com-
putational tool for hybrid systems, we find the largest
controllable set for which we can guarantee the aircraft
can both safely land and safely gearound. We a p
ply the control law synthesized from this computation,
and formulate a new, safe hybrid automaton. Room
this automaton, we abstract a discrete event system
which represents operation in the regions which result
in safe landing or gc-around maneuvers. We formu-
late the interface as a discrete event system, as well.
Using the verification techniques described in [7], we
verify the interface against the abstracted procedural
model. Lastly, we discuss implications of our results
and directions for future work.

1608

Setting Gear
1 I 0.4225 0.024847 0.04831 Flans-20 Down
2 0.7043 0.025151 0.04831 Flaps-25 Down 1 3 1 0.8212 0.04831 0.025455 Fl~~is-30 D: 1
4 0.4225 0.019704 0.04589 Flaps-20
5 0.7043 0.020009 0.04589 Flaps-25
6 0.8212 0.020313 0.04589 Flaps-30 Up

Table 1: Aerodynamic constants for autoland modes in-
dexed by 5 = f.(%,u).

I b = f * (z , ")
: T = T...,

B.;.

T = O T = O

.~~ ~ . . ~ ~~.~

Figure 2: Hybrid procedural automaton Hprocedure.

The initial state of our procedural model Hprocedure
(Figure 2) is Flare, with flaps at Flaps-30 and thrust
fixed at idle. As instructed, when a pilot. initiates a go-
around maneuver (often called a "TOGA due to the
"Take-Off/Go-Around" indicator on the pilot controls
and display), the pilot changes the flaps to Flaps-20 and
the autothrottle forces the thrust to T,, (Toga-Max).
When the aircraft obtains a positive rate of climb, the
pilot raises the landing gear, and the autothrottle al-
lows T h [O,T,,] (Toga-Up). The aircraft continues
to climb to the missed approach altitude halt, then
switches into an altitude-holding mode, Altitude (with
the landing gear down). If a go-around does not occur,
the aircraft switches to Rollout when it lands. (We do
not model the aircraft's behavior after touchdown.)

Although go-arounds are unpredictable and may be re-
quired at any time during the autoland prior to touch-
down, CTTOGA is a controlled transition because the pi-
lot must initiate the go-around for it to occur. Cer-
tain events occur simultaneously: changing the flaps
to Flaps-30 and event UTOGA: raising the landing gear
and h 2 0: and lowering the landing gear and h 2 halt.

2.3 State and Input Bounds
Each mode in the procedural automaton is subject to
state and input bounds, due to constraints arising from
aircraft aerodynamics and desired aircraft behavior.
These bounds, shown in Table 2, form the boundary
of the flight envelope WO. Bounds on V and a are de-
termined by stall speeds and structural limitations for
each flap setting [22]. Bounds on y and T are deter-

Mode V [m/s] y [degrees] o (degrees1
Flare I55.57, 87.461 [-6.0°,0.00] [-go, 15'1

Toaa-Max 163.79. 97.741 1-6.O0,0.ODI 1-8'. 12'1
T&-U~ , i63.79; 97.74j '10.00,13.3°j i-e0,12~j
Altitude 163.79, 97.741 [-0.7°:0.70] [-8", 12'1

Table 2: State hounds for autoland modes of Hprocedure.

mined by the desired maneuver 1231. Additionally, at
touchdown, 0 E [On, 12.9"] t o prevent a tail strike, and
h 2 -1.829 m/s to prevent damage to the landing gear.

3 Safety Analysis

The state bounds just described define flight envelopes
for each of the discrete modes. These envelopes are
not necessarily controlled invariant. Thus, we need to
determine what subsets of these envelopes are actu-
ally controllable given the input authority available to
the autopilot. Because the nonlinear dynamics of our
model (1) make analytic determination of the control-
lable subsets impossible, we employ a previously de-
veloped computational algorithm for finding controlled
invariant sets for this problem 131.

3.1 Computing Reachable Sets
For each discrete mode of the autoland system, we de-
fine the target set as the region outside the flight en-
velope WO, denoted (WO)" for the complement of WO.
Given some dynamically evolving system and wme tar-
get set, we define the backward reachable set W'(t) as
the set of all system states which reach the target set
in time t. The autopilot inputs a and T try to drive
the state away from the target set, to keep the aircraft
within WO.

Computing the reachable set in a discrete system with
a finite number of states-and hence a finite number
of possible transitions-is a straightforward but possi-
bly time consuming t,ask of enumerating all t.he states
which have a path bo the target set. Computing reach-
able sets for a continuous system is a much more dif-
ficult undertaking; for example, how should the un-
countably many states in any nontrivial target set be
represented?

An algorithm has been developed for computing the
reachable sets of cont,inuous nonlinear systems, based
on a time dependent Hamilton-Jacobi (HJ) part,ial dif-
ferential equation (PDE) [2: 31. For x = f(z:u), z h X,
input U E U tries to keep the system from reaching the
target set. Define a continuous function JO : X + R
such t.hat, (WO)' = {z E XIJo(z) 5 0). As shown in 121,

1609

by solving the terminal value HJ PDE

DtJ(z , t) +min[O, H(x,D,J(z , t))] = 0 for t < 0
for t = 0; J(z ,O) = Jo(z)

(2)
where H(x!p) = maxUEupTf(x:u), for the function J :
X x (-co, 01 4 1w: we obtain an implicit representation
of the reachable set W"(t) = {z E XIJ(z,-t) 5 0).
The statedependent control synthesized from this cal-
culation is U'(.) = argmax,,upTf(z,U).

Analytically solving (2) for a general Jo(z) and f(x.u)
is likely to be impossible. Computational algorithms
are complicated by the fact that for even smooth Jo(x)
and f(z, U), the solution J (z , t) can develop discontinn-
it.ies in its derivatives after finite time, and hence cease
to solve (2) in a classical sense. The appropriate weak
solution is the viscosity solution 1241, and level set algo-
rithms [Z5] are numerical techniques developed to com-
pute such solutions. A set of high resolution schemes
[26] have been designed and implemented [3] to com-
pute J (x , t) , and hence the boundary of the reachable
set Wc(t) , very accurately.

3.2 Computing Controllable Flight Envelopes
In any given mode of Hprocedurer the aircraft should
remain within its flight envelope WO. To determine
the maximal controllable subset W of WO, we run a
reachable set computation. The reachable set typically
converges to a fixed point: Wc(t) - W" as t - fco.
We call W the safe flight envelope. Yet the full autopi-
lot system contains transitions bet,ween modes, and so
we cannot examine any mode in isolation.

We separate the hybrid procedural model across the
user-controlled switch UTOGA into two hybrid subsys-
tems, HF and HT, shown in Figure 2. Computation-
ally, automatic transitions are smoothly accomplished
by concatenating modes across the switch, so that the
change in dynamics across the switching surface is mod-
eled as another nonlinearity in the dyna.mics. Addition-
ally, we assume in HT that if the aircraft leaves the
top of the computational domain (h = 20 m) without
exceeding its flight envelope, it is capable of reaching
Altitude mode, which we consider to be completely safe.

The initial flight envelopes (W F) ~ and (WT)O are deter-
mined by state bounds on each mode given in Table 2.

.We perform the reachability computation on HF and
HT to obtain the safe flight envelopes WF and WT. Fig-
ure 3 shows WF, and Figure 4 shows WT in Toga-Up
and Toga-Max modes. (Note that the boundary of WF
along y = 0 corresponds with the transitjon boundary
of WT between Toga-Up and Toga-Max, h = 0.)

Figure 5 shows the continuous region WF n WT from
which we can guarantee both a safe landing and a safe
gc-around. Notice that this set is smaller than WF, the

Figure 3: Safe region WF; the outer box is (W F) ~ .

Figure 4: Safe region WT: the outer box is (WT)O.

region from which a safe landing is possible: the pilot
is further restricted in executing a go-around. There
are states from which a safe landing is possible, hut a
safe gearound is not.

4 Interface Verification

A general verification technique for analyzing interfaces
has been sought for many years. The need was moti-
vated by serious incidents and accidents, involving hu-
man interaction with complex automated systems (e.g.,
cockpit automation). Recently, a theory, methodol-
ogy, and a detailed verification procedure was devel-
oped by researchers at NASA 17, 161. The methodol-
ogy considers four elements: the machine model, user
model, interface model, and the task specification (e.g.,
safe/unsafe, multiple modes). In this section we use the
methodology of [7] in the context of this hybrid system
example.

In most commercial aircraft, the low-level control is
performed by the autopilot, and the pilot anticipates
system behavior by understanding the behavior of each
autopilot mode. We assume an automated controller
enforces U = U*(.) within each hybrid subsystem. By
doing so, we mimic the supervisory role pilots have in

1610

" gml "I-, s

Figure 5: The solid shape is the safe region W F fl WT,
from which safe landing and safe g-around is
possible. The meshes depict WF and WT.

ull

Figure 6: Gi,tertace for autoland/go-around maneuver.
Event 01 occurs when h = 0, c3 -.hen h 2 haLt.

highly aut.omated aircraft, including the option not to
enforce a recommended switch.

The pilot activates various knobs, buttons, and toggles
t o change the system's mode. Interaction between the
pilot's actions and the system's modes are encapsulated
by a finitestate machine representation of the inter-

Qinterrace are determined by the indications on the dis-
play; events Cjnterfxe are determined by internal tran-
sitions in the system, or by the pilot's actions. The
transition function is hintedace. The interface for an
autoland/gwaround is shown in Figure 6.

To compare the interface against the procedural
model, we implement the controller for safety U*(.) in
Hprocedure and create a discrete abstraction G;lrocedure
based on the resultant closed-loop hybrid system. \Ve
partition the state-space in each mode into the interior,
boundary, and complement of the safe Right envelope in
that particular mode. Across the user-controlled switch
UTOGA, we partition the state space according to the in-
tersection of WF in Flare and WT in Toga-Up, resulting
in nine regions in each mode. Across all other switches
in H F and HT, we enforce safety by implementing U*(.)

so that trajectories which begin inside or on the bound-

face Ginterrace = (&?interface: CiDterrae, &,tera..). Modes

1611

ary of the safe Right envelope in one mode will remain
within or on the boundary of the safe flight envelope
in all other modes in that hybrid subsystem. Only
across user-controlled switches can the system become
unsafe, because we can make no guarantees about the
user's actions. G;rocedure has modes Q;,,,,,,, events
C;r,,cedure, and transition function 6;rocedure.

We verify the correspondence between GinteErxe and
G',,,,,,,, according to the verification methodology in
[7r We associate each mode in &interface and QErocedure
to a certain specification class 171. Specification classes
are a way of indicating a type of behavior or quality
of the system - for example, modes which the system
should avoid belong to a specification class Unsafe.

The interface and the abstracted procedural model are
related through their events: events in map
to events in Cinterface. We define the map through
C&,cedure 2+ Einterfxe, by examining the events in
each set and creating a correspondence between them
by hand 171. E.vents in which do not have a
corresponding transition in CinterfaCe map t o the empty
event E 171.

The two system are verified through the creation of
a composition, defined by the map R. The composi-
tion G,,,p,,iti,, allows us t o keep track of the modes
and events in both systems (Ginterrace and Gprocedure)
at the same time. The process of creating the composi-
tion uncovem possible problems: error states, blocking
states, and augmented states 171.

The composition begins with each initial state in each
system for a given specification class, and is repeated
for each pair of initial states. If each event a in
GprDcedure such that p 5 p' has a corresponding event

.(U) .(a) in Ginterrace such that q + q', then the composite

state (p, g) r2 (p', 4') exists. If p and q have the same
specification class, and p' and q' have the same speci-
fication class, t,hen t,he composition continues through-
out the model. An error state exists when p' and q'
have different specification classes [7].

Other problems occur when the composition fails. If
for a transition U E C;ioceduie from p 5 p' there is

no corresponding transition q - q', then the compw
sition has reached a 6locking state [7]. (The interface
blocks a transition which occurs in the abstracted p r e
cedural model.) Alternatively, if there is a transition

.(e.) R(Q) E Ei,terface from q - q' but no corresponding
transition a E C&cedure from p 5 p', then the com-
position has reached an augmented state [7]. (The in-
terface indicates a transition which is not possible in
the abstracted procedural model.)

.(e)

iC, l>, i a3 * i

Figure 7: Nondeterministic behavior from the pilot's
point of view.

If the composition fails (due to blocking or augmented
states), or if the composition contains error states (due
to mismatched specification classes) then the interface
is not an adequate representation of the procedural
model [7].

Following this process for the autoland example, we
find that the composition GcOmpOIition contains error
states. For example, if the pilot initiates a grraround
when the aircraft is in WgnW@ in FLARE, G,,,,,,iti,,
reveals specification classes (Flare,Flare)
(Toga, Toga). However, if the pilot initiates a
go-around from W; n W+ in FLARE, G,,,,,,iti,.
reveals specification classes (Flare, Flare)
(Unsafe,Toga). From the pilot's point of view, error
states appear as nondeterminism: the aircraft some-
times behaves as the pilots expects, but sometimes does
not, as shown in Figure 7 .

5 Implications and Conclusion

There is an ongoing debate in aviation, space, and other
safety-critical industries about the role of the operator
and the extent t o which automation can and should
be used. This debate has been fueled by incidents and
accidents in which pilots were surprised about the he-
havior of the automation. While the debate will con-
tinue, it is clear that some of the problems in human-
automation interaction stem from design problems. In-
terface verification methods are critical for identifying
design problems early on in the design phase. Cur-
rent efforts at NASA are aimed at developing methods
for extracting the machine, interface, and user-models
from Java code and then applying the interface verifi-
cation method of 171 to identify error states.

Verification within a hybrid framework allows us to ac-

count for the inherently complicated dynamics under-
lying the simple, discrete representations displayed to
the pilot. In this example, in order t o safely supervise
the system, the pilot must have enough information to
know before entering'a gc-around maneuver whether or
not the aircraft will remain safe.

The interface verification methodology begins with a
procedural model, a hybrid system which incorporates
discrehe mode logic & well as nonlinear continuous dy-
namics. The hybrid safety computation provides us
with continuous control restrictions, which, if enforced,
guarantee that the system will always remain safe. This
guarantee holds to within the accuracy of our model.
We ahstract a discrete event system from this hybrid
system with safety restrictions. To do so, we partition
the continuous states of the hybrid system with safety
restrictions according to their location in safe or unsafe
regions in each mode. This abstraction, along with the
formulation of the interface model as a discrete event
system, allows us t o use existing interface verification
techniques [7] . We compare the discrete interface and
procedural models by analyzing their composition for
error, blocking, and augmented states, which result in
confusing and unpredictable behavior from the pilot's
point of view.

The methodology presented here also extends to sys-
tems with disturbances, such as wind or an engine fail-
ure. \i'hile verification tools can aid design, we also
hope to contribute directly to the design problem (as
in [27]), within a hybrid framework.

6 Acknowledgements

Thanks to Michael Heyniann, David Austin, Randall
hlumaw, and Charles Hynes for their invaluable assis-
tance and input.

References

[l] C. Tomlin, J. Lygeros, and S. Sastry, "A game
theoretic approach to controller design for hybrid sys-
tems," Proceedings ojthe IEEE, vol. 88, no. 7, pp. 949-
970, 2000.

[2] I. Mitchell, A. Bayen, and C. Tomlin, "Validat-
ing a Ha.milton-Jacobi approximation to hybrid sys-
tem reachable sets," in Hybnd Systems: Computation
and Control (hf. D. Benedetto and A. Sangiovanni-
Vincentelli, eds.), LNCS 2034, pp. 418-432, Springer
Verlag, March 2001.

131 I. Mitchell, A. hl. Bayen, and C . J. Tomlin,
"Computing reachable sets for continuous dynamic
games using level set methods," IEEE Tmnsactions on
Automatic Control. Submitted, December.2001.

1612

[4] M. Oishi, C. Tomlin, V. Gopal, and D. Godbole,
“Addressing multiobjective control: Safety and perfor-
mance through constrained optimization,” in Hybrid
Systems: Computation and Control (M. D. Benedetto
and A. Sangiovanni-Vincentelli, eds.), LNCS 2034,
pp. 459-472, Springer Verlag, March 2001.

[5] A. Degani, M. Shafto, and A. Kirlik, “hlodes in
human-machine systems: Constructs, representation,
and classification,” International Journal of Aviation
Psychology, vol. 9, no. 2, pp. 125-138, 1999.
[6] Federal Aviation Administration, “Criteria for
approval of Category I11 weather minima for takeoff,
landing, and rollout,” Advisory Circular 120-28D, U.S.
Department of Tkansportation, July 1999.

[7] A. Degani and hl. Heymann, “Formal verifica-
tion of human-automation interaction,” Human Fac-
tors, vol. 44, no. 1, pp. 28-43, 2002.

[SI N. Leveson and E. Palmer, “Designing automa-
tion to reduce operator errors,“ in In the Proceedings
of the IEEE Conferrnce on Systems, Man, and Cyber-
netics, (Orlando, FL), pp. 1144-1150, 1997.

[9] N. Sarter, D. Woods, and C. Billings, “Automa-
tion surprises,” in Handbook of Human Factors and Er-
gonomics, pp. 1295-1327, NY: John Wiley and Sons,
Inc., 1999.

1101 E. Parasuraman, T. Sheridan, and C. Wickens,
“A model for types and levels of human interaction
with automation,” IEEE I’ramactions on Systems,
Man, and Cybernetics Part A: Systems and Humans,
vol. 30, May 2000.

[Ill C. Billings, Aviation Automation: The Search for
a Human-Centered Approach. Hillsdale, NJ: Erlbaum,
1997.
[E] E. Wiener, “The human factors of advanced tech-
nology (“glass cockpit”) transport aircraft,” NASA
Contractor Report 177528, NASA Ames Research Cen-
ter, hloffett Field, CA, 1989.

1131 J. Rushby, “Using model checking to help dis-
cover mode confusions and other automation sur-
prises,” in Proceedings of the Workshop on Human ET-
ror, Safety, and System Development (HESSD), (Bel-
gium), June 1999.

1141 R. Butler, S. Miller, J. Potts, and V. Carreno,
“A formal methods approach to the analysis of mode
confusion,” in Proceedings of the AIAA/IEEE Digital
Avionics Systems Conference, pp. C41/1-C41/8, 1998.
[I51 J. Crow, D. Javanx, and J. Rushby, ‘Models
and mechanized methods that integrate human fac-
tors into automation design,” in International Confer-
ence on Human-Computer Interaction in Aeronautics,
(Toulouse, France), September 2000.
[I61 A. Degani, M. Heyma.nn, G. hleyer, and
hl. Shafto, “Some formal aspects of human-automation
interaction,’’ NASA Technical Memorandum 209600,

NASA Ames Research Center, Moffett Field, CA, April

1171 S. Vakil, A. hIidkiff, T. Vaneck, and R. Hansman,
“hlode awareness in advanced autoflight systems,“ in
Proceedings of the 6th IFAC/IFIP/IFORS/IEA Sym-
posium on Analysis, Design, and Evaluation of Man-
Machine Systems, (Cambridge, MA), 1995.

[I81 A. Bayen and C. Tomlin, “Nonlinear hybrid au-
tomaton model for aircraft landing,” SUDAAR 737,
Dept. of Aeronautics and Astronautics, Stanford Uni-
versity, Stanford, CA, 2001.

[I91 S. Rogers, K. Roth, H. Cao, J. Slotnick, hl. Whit-
lock, S. Nash, and kl. Baker, “Computation of viscous
flow for a Boeing 777 aircraft in landing configuration,”
in AIAA Conference Proceedings, no. 2000-4221, Octo-
ber 1992.

1201 J. Roskam and C.-T. Lan, Airplane Aerodynam-
ics and Performance. Lawrence, Kansas: Design, Anal-
ysis, and Research Corporation, 1997.

[21] A. Flaig and R. Hilbig, “High-lift design for large
civil aircraft,” in AGARD Conference Proceedings 515,
(France), October 1992.

1221 L. Jenkinson, P. Simpkin, and D. Rhodes, Civil
Jet Aircraft Design. Reston, VA: American Insti-
tute of Aeronautics and Astronaut,ics, Inc., 1999.
http:/jwww. bh.com/companions/aerodata.

[23] 1‘. Lambregts, “Automatic flight control: Con-
cepts and methods.” FAA National Resource Special-
ist, Advanced Controls, 1995.

1241 hl. G. Crandall, L. C. Evans, and P.-L. Lions,
“Some properties of viscosity solutions of Hamilton-
Jacobi equations,” Transactions of the American hfath-
ematical Society, vol. 282, no. 2, pp. 487-502, 1984.

1251 S. Osher and J. A. Set.hian: “Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations,” Journal of Computa-
tional Physics, vol. 79, pp. 12-49, 1988.

[26] S. Osher and R. Fedkiw, ’The Level Set Method
and Dynamic Implicit Surfaces. Springer-Verlag, 2002.

1271 hl. Heymann and A. Degani, ‘’On abstractions
and simplifications in the design of human-automation
interfaces,’’ NASA Technical Memorandum 211397,
NASA Ames Research Center, kloffett Field, CA, 2002.

2000.

1613

http:/jwww

