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Abstract 

Modern commercial aircraft have extensive automation 
which helps the pilot by performing computations, ob- 
taining data, and completing procedural tasks. The 
pilot display must contain enough information so that 
the pilot can correctly predict the aircraft’s behavior, 
while not overloading the pilot with unnecessary in- 
formation. Human-automation interaction is currently 
evaluated through extensive simulation. In this pa- 
per, using both hybrid and discreteevent system tech- 
niques, we show how one could mathematically verify 
that an interface contains enough information for the 
pilot to safely and unambiguously complete a desired 
maneuver. We first develop a nonlinear, hybrid model 
for the longitudinal dynamics of a large civil jet air- 
craft in an autoland/go-around maneuver. We find the 
largest controlled subset of the aircraft’s flight envelope 
for which we can guarantee both safe landing and safe 
go-around. We abstract a discrete procedural model 
using this result, and verify a discrete formulation of 
the pilot display against it. An interface which fails 
this verification could result in nondeterministic or un- 
predictable behavior from the pilot’s point of view. 

1 Introduct ion 

One of the key enabling technologies for increased au- 
tomation in human-machine systems is verification, 
which allows for heightened confidence that the sy5  
tem will perform as desired. To verify system safety, 
the safety specification is first represented as a desired 
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subset of the state space in which the system should 
remain. The process of verifying safety then involves 
computing the subset of the state space which is back- 
wards reachable from this “safe set” of states; if this 
backwards reachable set intersects any states outside 
the desired region, then the system is deemed unsafe. 
We can restrict system behavior by pruning away sys- 
tem trajectories which lead to unsafe states, to synthe 
size a controller which, if enforced, guarantees safety. 

In the past several years, a method 111 and a numerical 
tool 12, 31 have been developed for verifying the safety 
of hybrid systems. Previous work, for example 141, has 
focused on applications of hybrid system theory to fully 
automated systems, assuming that the controller itself 
is an automaton. Here we consider the problem of con- 
trolling semi-automated systems, in which the automa- 
ton and a human controller share authority over the 
control of the system 151. In particular, we consider 
the problem of verification of an interface between a 
semi-automated hybrid system and a human controller, 
and we pose the question: Is the information displayed 
to the human controller about the hybrid system euolu- 
tion suficient for the human controller to act in such 
a way that the system =mains safe? We consider this 
problem within the framework of an example: the au- 
tomatic landing system (autoland) of a large civil jet 
airliner. 

The antoland system of modern aircraft is one of the 
most safety-critical components, and is subject to strin- 
gent certification criteria [61. Modeling the aircraft’s 
behavior, which incorporates logic from the autopilot 
as well as inherently complicated aircraft dynamics, re- 
sults in a high-dimensional hybrid system with many 
continuous and discrete states. Most of the informa- 
tion is abstracted away, so that only a subset of this 
information is displayed to the pilot. Here, we are in- 
terested in verifying that the cockpit interface provides 
the pilot with enough information so that the pilot can 
safely land or safely go-around. 
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2 Problem Description 

In a typical autoland maneuver (Figure l), the aircraft 
descends towards the glideslope, an inertial beam which 
the aircraft can track. With the landing gear down, 
the pilot sets the flaps at FlapsZO, the first high-lift 
configuration in the landing sequence. After capturing 
the glideslope signal, the pilot increases flap deflection, 
stepping through both Flaps-25 and Flaps-30 by the 
time the aircraft reaches 1000’ altitude. Near 50’, the 
aircraft leaves the glideslope and begins a flare maneu- 
ver, which allows the aircraft t o  touchdown smoothly 
on the runway with an appropriate descent rate. 

If for any reason the pilot or air traffic controller deems 
the landing unacceptable (debris on the runway, a pc- 
tential conflict with another aircraft, or severe wind 
gusts, for example), the pilot must initiate a gc-around 
maneuver. A guaround can be initiated anytime after 
the glideslope has been captured and before the aircraft 
touches down. Pushing the gc-around button engages a 
sequence of events designed to make the aircraft climb 
as quickly as possible to a dialed-in missed-approach 
altitude which the pilot usually sets to 2500’. 

2.1 Aerodynamic Characterist ics 
The phases of landing and gc-around correspond to 
fundamentally different operating conditions of the air- 
craft. We model the nonlinear longitudinal dynamics 
of a large civil jet aircraft by 5 = f,(z, U), in which the 
state z = [V, 7 ,  h] E R3 includes the aircraft’s speed V, 
flightpath angle 7 ,  and altitude h (see [IS]): 

(1) 
I -D(a, V )  + Tcos a - mgsin y 

V sin y 
[;:I=[ L(u,  V) + T sin a - mg cosy 

We assume the control input U = [T,a], with air- 
craft thrust T and angle of attack a. The aircraft 
has mass rn = 190000 kg, pitch 0 = a + y, and 
gravitational acceleration is g = 9.81 m/s2. The air- 
craft’s lift L(a, V) = i p V z S C ~ ( a )  and drag D(a, V) = 
i p V Z S C ~ ( a )  depend on air density p = 1.225 kg/m3, 
wing surface area S = 427.80 m2, and the coefficients 
of lift and drag,  CL(^) = CL, +  CL-^ and C D ( ~ )  = 
CD, + KC;(a). The constants C,, , CO,, and K were 
determined for the particular combinations of flap set- 
tings and landing gear in an autoland/gearound sce- 
nario [18, 19, 20, 21, 221 (Table 1). CL,, = 5.105 in all 
modes. 

2.2 Procedural  Automaton  
The discrete modes of our hybrid system result from 
the combination of aircraft dynamics and autopilot 
modes. We formulate a hybrid procedural model based 
on landing/gc-around procedures a pilot is trained to 
follow. We focus on a small part of the autoland p r o  
cedure, beginning with the flare maneuver. 

Figure 1: Typical landing scenario. 

The pilot’s “user model” of the autoland system, based 
on the pilot’s display, manuals, training, and personal 
experience, is necessarily different from the complete 
aircraft “truth model” [7]. Discrepancies between these 
models can result in mode confusion, a potentially un- 
safe situation in which the system does not behave as 
the pilot anticipates [5, 8, 91. Although the human 
factors community has historically dominated research 
on human-automation interaction [9, 10, 11, 121, there 
have recently been efforts by the formal methods com- 
munity [7, 13, 14, 15, 161 as well as system and control 
communities [I71 to address these safety-critical prob- 
lem. We build our methodology based on [7], in which 
user-interfaces are verified for a given task. In [7] the 
hybrid plant model is represented as an abstracted dis- 
crete system in which the system dynamics are mod- 
el& as plant-triggered (dynamic) transitions. It is not 
shown there how the discrete representation with its 
dynamic transitions are derived. In the present work, 
we represent the plant model as an explicit hybrid sys- 
tem and show how, with the aid of a control component, 
the detailed transformation into the equivalent discrete 
representation is performed. 

In this paper, we first develop a model of longitudi- 
nal aircraft dynamics in high-lift configurations used 
during a landing/guaround procedure. Using a com- 
putational tool for hybrid systems, we find the largest 
controllable set for which we can guarantee the aircraft 
can both safely land and safely gearound. We a p  
ply the control law synthesized from this computation, 
and formulate a new, safe hybrid automaton. Room 
this automaton, we abstract a discrete event system 
which represents operation in the regions which result 
in safe landing or gc-around maneuvers. We formu- 
late the interface as a discrete event system, as well. 
Using the verification techniques described in [7], we 
verify the interface against the abstracted procedural 
model. Lastly, we discuss implications of our results 
and directions for future work. 
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Setting Gear 
1 I 0.4225 0.024847 0.04831 Flans-20 Down 
2 0.7043 0.025151 0.04831 Flaps-25 Down 1 3 1 0.8212 0.04831 0.025455 Fl~~is-30 D: 1 
4 0.4225 0.019704 0.04589 Flaps-20 
5 0.7043 0.020009 0.04589 Flaps-25 
6 0.8212 0.020313 0.04589 Flaps-30 Up 

Table 1: Aerodynamic constants for autoland modes in- 
dexed by 5 = f.(%,u). 

I b = f * ( z , " )  
: T = T..., 

B.;. 

T = O  T = O  

.~~ ~ . . ~  ~~.~ 

Figure  2: Hybrid procedural automaton Hprocedure. 

The initial state of our procedural model Hprocedure 
(Figure 2) is Flare, with flaps at  Flaps-30 and thrust 
fixed at  idle. As instructed, when a pilot. initiates a go- 
around maneuver (often called a "TOGA due to the 
"Take-Off/Go-Around" indicator on the pilot controls 
and display), the pilot changes the flaps to Flaps-20 and 
the autothrottle forces the thrust to T,, (Toga-Max). 
When the aircraft obtains a positive rate of climb, the 
pilot raises the landing gear, and the autothrottle al- 
lows T h [O,T,,] (Toga-Up). The aircraft continues 
to  climb to  the missed approach altitude halt, then 
switches into an altitude-holding mode, Altitude (with 
the landing gear down). If a go-around does not occur, 
the aircraft switches to Rollout when it lands. (We do 
not model the aircraft's behavior after touchdown.) 

Although go-arounds are unpredictable and may be re- 
quired at  any time during the autoland prior to touch- 
down, CTTOGA is a controlled transition because the pi- 
lot must initiate the go-around for it to occur. Cer- 
tain events occur simultaneously: changing the flaps 
to  Flaps-30 and event UTOGA: raising the landing gear 
and h 2 0: and lowering the landing gear and h 2 halt. 

2.3 State and Input Bounds 
Each mode in the procedural automaton is subject to 
state and input bounds, due to constraints arising from 
aircraft aerodynamics and desired aircraft behavior. 
These bounds, shown in Table 2, form the boundary 
of the flight envelope WO. Bounds on V and a are de- 
termined by stall speeds and structural limitations for 
each flap setting [22]. Bounds on y and T are deter- 

Mode V [m/s] y [degrees] o (degrees1 
Flare I55.57, 87.461 [-6.0°,0.00] [-go, 15'1 

Toaa-Max 163.79. 97.741 1-6.O0,0.ODI 1-8'. 12'1 
T&-U~ , i63.79; 97.74j '10.00,13.3°j i-e0,12~j 
Altitude 163.79, 97.741 [-0.7°:0.70] [-8", 12'1 

Table 2: State hounds for autoland modes of Hprocedure. 

mined by the desired maneuver 1231. Additionally, at  
touchdown, 0 E [On, 12.9"] t o  prevent a tail strike, and 
h 2 -1.829 m/s to prevent damage to the landing gear. 

3 Safety Analysis 

The state bounds just described define flight envelopes 
for each of the discrete modes. These envelopes are 
not necessarily controlled invariant. Thus, we need to 
determine what subsets of these envelopes are actu- 
ally controllable given the input authority available to 
the autopilot. Because the nonlinear dynamics of our 
model (1) make analytic determination of the control- 
lable subsets impossible, we employ a previously de- 
veloped computational algorithm for finding controlled 
invariant sets for this problem 131. 

3.1 Computing Reachable Sets 
For each discrete mode of the autoland system, we de- 
fine the target set as the region outside the flight en- 
velope WO, denoted (WO)" for the complement of WO. 
Given some dynamically evolving system and wme tar- 
get set, we define the backward reachable set W'(t) as 
the set of all system states which reach the target set 
in time t. The autopilot inputs a and T try to drive 
the state away from the target set, to keep the aircraft 
within WO. 

Computing the reachable set in a discrete system with 
a finite number of states-and hence a finite number 
of possible transitions-is a straightforward but possi- 
bly time consuming t,ask of enumerating all t.he states 
which have a path bo the target set. Computing reach- 
able sets for a continuous system is a much more dif- 
ficult undertaking; for example, how should the un- 
countably many states in any nontrivial target set be 
represented? 

An algorithm has been developed for computing the 
reachable sets of cont,inuous nonlinear systems, based 
on a time dependent Hamilton-Jacobi (HJ) part,ial dif- 
ferential equation (PDE) [2: 31. For x = f(z:u),  z h X, 
input U E U tries to keep the system from reaching the 
target set. Define a continuous function JO : X + R 
such t.hat, (WO)' = {z E XIJo(z) 5 0). As shown in 121, 
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by solving the terminal value HJ PDE 

DtJ(z , t )  +min[O, H(x,D,J(z , t ) ) ]  = 0 for t < 0 
for t = 0; J(z ,O)  = Jo(z) 

(2) 
where H(x!p) = maxUEupTf(x:u), for the function J : 
X x (-co, 01 4 1w: we obtain an implicit representation 
of the reachable set W"(t) = {z E XIJ(z,-t) 5 0). 
The statedependent control synthesized from this cal- 
culation is U'(.) = argmax,,upTf(z,U). 

Analytically solving (2) for a general Jo(z) and f(x.u) 
is likely to be impossible. Computational algorithms 
are complicated by the fact that for even smooth Jo(x) 
and f(z, U), the solution J ( z ,  t )  can develop discontinn- 
it.ies in its derivatives after finite time, and hence cease 
to solve (2) in a classical sense. The appropriate weak 
solution is the viscosity solution 1241, and level set algo- 
rithms [Z5] are numerical techniques developed to com- 
pute such solutions. A set of high resolution schemes 
[26] have been designed and implemented [3] to com- 
pute J ( x ,  t ) ,  and hence the boundary of the reachable 
set Wc(t ) ,  very accurately. 

3.2 Computing Controllable Flight Envelopes 
In any given mode of Hprocedurer the aircraft should 
remain within its flight envelope WO. To determine 
the maximal controllable subset W of WO, we run a 
reachable set computation. The reachable set typically 
converges to a fixed point: Wc(t )  - W" as t - fco. 
We call W the safe flight envelope. Yet the full autopi- 
lot system contains transitions bet,ween modes, and so 
we cannot examine any mode in isolation. 

We separate the hybrid procedural model across the 
user-controlled switch UTOGA into two hybrid subsys- 
tems, HF and HT,  shown in Figure 2. Computation- 
ally, automatic transitions are smoothly accomplished 
by concatenating modes across the switch, so that the 
change in dynamics across the switching surface is mod- 
eled as another nonlinearity in the dyna.mics. Addition- 
ally, we assume in HT that if the aircraft leaves the 
top of the computational domain ( h  = 20 m) without 
exceeding its flight envelope, it is capable of reaching 
Altitude mode, which we consider to be completely safe. 

The initial flight envelopes ( W F ) ~  and (WT)O are deter- 
mined by state bounds on each mode given in Table 2. 

.We perform the reachability computation on HF and 
HT to obtain the safe flight envelopes WF and WT. Fig- 
ure 3 shows WF, and Figure 4 shows WT in Toga-Up 
and Toga-Max modes. (Note that the boundary of WF 
along y = 0 corresponds with the transitjon boundary 
of WT between Toga-Up and Toga-Max, h = 0.) 

Figure 5 shows the continuous region WF n WT from 
which we can guarantee both a safe landing and a safe 
gc-around. Notice that this set is smaller than WF, the 

Figure 3: Safe region WF; the outer box is ( W F ) ~ .  

Figure 4: Safe region WT: the outer box is (WT)O. 

region from which a safe landing is possible: the pilot 
is further restricted in executing a go-around. There 
are states from which a safe landing is possible, hut a 
safe gearound is not. 

4 Interface Verification 

A general verification technique for analyzing interfaces 
has been sought for many years. The need was moti- 
vated by serious incidents and accidents, involving hu- 
man interaction with complex automated systems (e.g., 
cockpit automation). Recently, a theory, methodol- 
ogy, and a detailed verification procedure was devel- 
oped by researchers at NASA 17, 161. The methodol- 
ogy considers four elements: the machine model, user 
model, interface model, and the task specification (e.g., 
safe/unsafe, multiple modes). In this section we use the 
methodology of [7] in the context of this hybrid system 
example. 

In most commercial aircraft, the low-level control is 
performed by the autopilot, and the pilot anticipates 
system behavior by understanding the behavior of each 
autopilot mode. We assume an automated controller 
enforces U = U*(.) within each hybrid subsystem. By 
doing so, we mimic the supervisory role pilots have in 
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Figure 5: The solid shape is the safe region W F  fl WT,  
from which safe landing and safe g-around is 
possible. The meshes depict WF and WT. 

ull 

Figure  6:  Gi,tertace for autoland/go-around maneuver. 
Event 01 occurs when h = 0, c3 -.hen h 2 haLt. 

highly aut.omated aircraft, including the option not to 
enforce a recommended switch. 

The pilot activates various knobs, buttons, and toggles 
t o  change the system's mode. Interaction between the 
pilot's actions and the system's modes are encapsulated 
by a finitestate machine representation of the inter- 

Qinterrace are determined by the indications on the dis- 
play; events Cjnterfxe are determined by internal tran- 
sitions in the system, or by the pilot's actions. The 
transition function is hintedace. The interface for an 
autoland/gwaround is shown in Figure 6. 

To compare the interface against the procedural 
model, we implement the controller for safety U*(.) in 
Hprocedure and create a discrete abstraction G;lrocedure 
based on the resultant closed-loop hybrid system. \Ve 
partition the state-space in each mode into the interior, 
boundary, and complement of the safe Right envelope in 
that particular mode. Across the user-controlled switch 
UTOGA, we partition the state space according to the in- 
tersection of WF in Flare and WT in Toga-Up, resulting 
in nine regions in each mode. Across all other switches 
in H F  and HT,  we enforce safety by implementing U*(.)  

so that trajectories which begin inside or on the bound- 

face Ginterrace = (&?interface: CiDterrae, &,tera..). Modes 

1611 

ary of the safe Right envelope in one mode will remain 
within or on the boundary of the safe flight envelope 
in all other modes in that hybrid subsystem. Only 
across user-controlled switches can the system become 
unsafe, because we can make no guarantees about the 
user's actions. G;rocedure has modes Q;,,,,,,, events 
C;r,,cedure, and transition function 6;rocedure. 

We verify the correspondence between GinteErxe and 
G',,,,,,,, according to the verification methodology in 
[7r We associate each mode in &interface and QErocedure 
to a certain specification class 171. Specification classes 
are a way of indicating a type of behavior or quality 
of the system - for example, modes which the system 
should avoid belong to a specification class Unsafe. 

The interface and the abstracted procedural model are 
related through their events: events in map 
to events in Cinterface. We define the map through 
C&,cedure 2+ Einterfxe, by examining the events in 
each set and creating a correspondence between them 
by hand 171. E.vents in which do not have a 
corresponding transition in CinterfaCe map t o  the empty 
event E 171. 

The two system are verified through the creation of 
a composition, defined by the map R.  The composi- 
tion G,,,p,,iti,, allows us t o  keep track of the modes 
and events in both systems (Ginterrace and Gprocedure) 
at the same time. The process of creating the composi- 
tion uncovem possible problems: error states, blocking 
states, and augmented states 171. 

The composition begins with each initial state in each 
system for a given specification class, and is repeated 
for each pair of initial states. If each event a in 
GprDcedure such that p 5 p' has a corresponding event 

.(U) .(a) in Ginterrace such that q + q', then the composite 

state (p, g )  r2 (p', 4') exists. If p and q have the same 
specification class, and p' and q' have the same speci- 
fication class, t,hen t,he composition continues through- 
out the model. An error state exists when p' and q' 
have different specification classes [7]. 

Other problems occur when the composition fails. If 
for a transition U E C;ioceduie from p 5 p' there is 

no corresponding transition q - q', then the compw 
sition has reached a 6locking state [7]. (The interface 
blocks a transition which occurs in the abstracted p r e  
cedural model.) Alternatively, if there is a transition 

.(e.) R(Q) E Ei,terface from q - q' but no corresponding 
transition a E C&cedure from p 5 p', then the com- 
position has reached an augmented state [7]. (The in- 
terface indicates a transition which is not possible in 
the abstracted procedural model.) 

.(e) 



iC, l>, i  a3 * ......... i 

Figure  7: Nondeterministic behavior from the pilot's 
point of view. 

If the composition fails (due to blocking or augmented 
states), or if the composition contains error states (due 
to mismatched specification classes) then the interface 
is not an adequate representation of the procedural 
model [7]. 

Following this process for the autoland example, we 
find that the composition GcOmpOIition contains error 
states. For example, if the pilot initiates a grraround 
when the aircraft is in WgnW@ in FLARE, G,,,,,,iti,, 
reveals specification classes (Flare,Flare) 
(Toga, Toga). However, if the pilot initiates a 
go-around from W; n W+ in FLARE, G,,,,,,iti,. 
reveals specification classes (Flare, Flare) 
(Unsafe,Toga). From the pilot's point of view, error 
states appear as nondeterminism: the aircraft some- 
times behaves as the pilots expects, but sometimes does 
not, as shown in Figure 7 .  

5 Implications and Conclusion 

There is an ongoing debate in aviation, space, and other 
safety-critical industries about the role of the operator 
and the extent t o  which automation can and should 
be used. This debate has been fueled by incidents and 
accidents in which pilots were surprised about the he- 
havior of the automation. While the debate will con- 
tinue, it is clear that some of the problems in human- 
automation interaction stem from design problems. In- 
terface verification methods are critical for identifying 
design problems early on in the design phase. Cur- 
rent efforts at  NASA are aimed at  developing methods 
for extracting the machine, interface, and user-models 
from Java code and then applying the interface verifi- 
cation method of 171 to identify error states. 

Verification within a hybrid framework allows us to ac- 

count for the inherently complicated dynamics under- 
lying the simple, discrete representations displayed to 
the pilot. In this example, in order t o  safely supervise 
the system, the pilot must have enough information to 
know before entering'a gc-around maneuver whether or 
not the aircraft will remain safe. 

The interface verification methodology begins with a 
procedural model, a hybrid system which incorporates 
discrehe mode logic & well as nonlinear continuous dy- 
namics. The hybrid safety computation provides us 
with continuous control restrictions, which, if enforced, 
guarantee that the system will always remain safe. This 
guarantee holds to within the accuracy of our model. 
We ahstract a discrete event system from this hybrid 
system with safety restrictions. To do so, we partition 
the continuous states of the hybrid system with safety 
restrictions according to  their location in safe or unsafe 
regions in each mode. This abstraction, along with the 
formulation of the interface model as a discrete event 
system, allows us t o  use existing interface verification 
techniques [7 ] .  We compare the discrete interface and 
procedural models by analyzing their composition for 
error, blocking, and augmented states, which result in 
confusing and unpredictable behavior from the pilot's 
point of view. 

The methodology presented here also extends to sys- 
tems with disturbances, such as wind or an engine fail- 
ure. \i'hile verification tools can aid design, we also 
hope to contribute directly to the design problem (as 
in [27]), within a hybrid framework. 
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