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A mathematical framework for delay analysis in
single source networks

Samitha Samaranayake, Axel Parmentier, Yiguang (Ethan) Xuan, Alexandre Bayen

Abstract—This article presents a mathematical framework for
modeling heterogeneous flow networks with a single source and
multiple sinks. The traffic is differentiated by the destination
(i.e. Lagrangian flow) and different flow groups are assumed to
satisfy the first-in-first-out (FIFO) condition at each junction.
The queuing in the network is assumed to be contained at
each junction node and spill-back to the previous junction is
ignored. We show that our model leads to a well-posed problem
for computing the dynamics of the system and prove that the
solution is unique through a mathematical derivation of the
model properties. The framework is then used to analytically
prescribe the delays at each junction of the network and
across any sub-path, which is one of the contributions of the
article. This is a critical requirement when solving control and
optimization problems over the network, such as system optimal
network routing and solving for equilibrium behavior. In fact,
the framework provides analytical expressions for the delay at
any node or sub-path as a function of the inflow at any upstream
node. Furthermore, the model can be solved numerically using a
very simple and efficient feed forward algorithm. We demonstrate
the versatility of the framework by applying it to two example
networks, a single path of multiple bottlenecks and a diverge
junction with complex junction dynamics.

I. INTRODUCTION

Modeling and analysing the dynamics of network flows is
an important problem that has applications in many different
areas such as transportation planning [3, 6, 12], air traffic
control [9, 16], communication networks [1, 2, 4, 5], pro-
cessor scheduling [17] and supply chain optimization [10].
Flow models are crucial for understanding the response of
networked systems under different boundary conditions, es-
timating the state of the system, measuring system perfor-
mance under different tunable parameters and devising the
appropriate control strategies for efficient operation of the
system. For example, in transportation networks, flow models
are used for traffic estimation [19], dynamic traffic assignment
or demand response assessment [8], traffic signal control [7],
ramp-metering control [13] and incident rerouting [15]. This
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article focuses on modeling heterogeneous (multi-path) physi-
cal flows through a network with a single source and multiple
sinks with the specific objective of expressing the delays at
each node of the network as a function of the boundary flows
at the source. This can be a critical requirement when solving
control and optimization problems over a network in cases
where the flow entering the network is one of the direct
or indirect control parameters of the system. For example,
when trying to eliminate congestion at a critical node of
the network by manipulating the boundary flows [14]. We
present our model in the context of physical flow networks
and particularly freeway transportation networks, which have
the following physical requirements, but our results can be
applied to any network that satisfies these properties: 1) link
flows are capacity restricted, 2) the flow through each junction
satisfies the first-in-first-out (FIFO) condition, and 3) there
is no holding of flow, i.e. the flow through a junction is
maximized subject to the FIFO condition.

While there is a vast literature on network flow propagation,
particularly for various packet networks, a large majority
of these dynamics models violate the FIFO and no hold-
ing requirements listed above, which are essential require-
ments in phyisical flow networks. Many models proposed for
transportation network flows do infact satisfy these physical
requirements [3, 6], but none of these models analytically
prescribe the internal delays of the network as a function of
the boundary flows. Therefore, a new framework is required
for the problem that we consider.

Our approach can be summarized as follows. We assume
that the traffic flow is differentiated by the destination of the
flow (i.e. Lagrangian flow) and that the different flow groups
satisfy the FIFO condition at each junction. The queuing in the
network is assumed to be contained at each junction node and
spill-back to the previous junction if occurs is ignored1. We
show that our model leads to a well-posed ordinary differential
equation for computing the dynamics of the network as a
function of the boundary flows and prove that the solution
is unique through a mathematical derivation of the model
properties. The main benefit of this framework is the ability to
analytically prescribe the delays at any junction in the network
and across any sub-path as a function of the the boundary
flows, which can be a important requirement when solving
certain control and optimization problems, such as demand
allocation problems, where the flow entering the network
is one of the direct or indirect control parameters. This is

1Spill back to the previous junction can be observed and flagged when
it occurs. The primary goal of this model is for being used in optimization
problems where (in most cases) a good solution will eliminate long spill backs.
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achieved via the creation of a time mapping operator that
maps the traffic flow at a given node at a given time to the
corresponding flow at the origin of the network when that
flow entered the network. We also show that this model can
be solved numerically using a simple and efficient forward
simulation approach. Finally, we demonstrate the application
of the model by applying it to two example networks, a
single path of multiple bottlenecks and a diverge junction with
complex junction dynamics.

The article is organized as follows. Section 2 introduces
the network properties and junction dynamics. Then section
3 formalizes the time mapping operator, shows the well-
posedness of the problem and proves the uniqueness of the
solution to this model. Section 4 demonstrates the practical
application of the mathematical framework by showing that
the off-ramp model posed by Newell [11] can be modeled
using this framework. Section 5 concludes the article.

II. A POINT QUEUE MODEL FOR NETWORK FLOW

The traffic network with a single source is modeled as an
arborescence2. The congestion at each bottleneck is modeled
as a vertical queue that is located at the start of the bottleneck.
Thus, the physical propagation of the queue forming at the
bottleneck is not modeled. This modeling choice is only re-
strictive when the queue propagates upstream to the preceding
junction, as the change in dynamics at the junction due to the
queue is not taken into account, but the model is equivalent
to a horizontal queuing model otherwise.

A. Network definitions

A node v denotes a junction in the network and V is the
set of all nodes. A link l = (vin

l , v
out
l ) is a couple consisting

of an origin node vin
l and a destination node vout

l , and L is the
set of all links.

The congestion-free travel time on link l is denoted by Tl,
an agent that enters link l at time t will exit link l at time
t+ Tl. The congestion-free travel time between nodes v1 and
v2 is denoted by T(v1,v2), an agent that enters node v1 at time
t will reach node v2 at time t+ T(v1,v2)

The set of incoming links to node v is denoted by Lin
v , the

set of outgoing links from node v is denoted by Lout
v and the

set of all links l connected to node v is denoted by Lv .

Lin
v = {l ∈ L|vout

l = v}, Lout
v = {l ∈ L|vin

l = v} (1)

A node v is a source if it admits no incoming link (Lin
v = ∅).

A node v is a sink if it admits no exiting link (Lout
v = ∅). The

set of sinks is denoted by S.
The set of nodes V and the set of links L compose a

network. Due to the network being an arborescence, it contains
a unique source indexed by v0. For all nodes v ∈ V \{v0}, Lin

v

is a singleton. The element of this singleton is called the parent
node and is denoted by πv: Lin

v = {(πv, v)}.
We define a path p(vorig,vdest) as a finite sequence of distinct

nodes from an origin node vorig to a destination node vdest

2An arborescence is a directed rooted tree where all edges point away from
the root

such that there is a link connecting each pair of subsequent
nodes.
p(vorig,vdest) = (vorig, · · · , vdest) s.t. (πvi , vi) ∈ L ∀i ∈ p\vorig

There is a unique path from any source to any destination
since the network is tree structured. For each sink s, let ps be
the path starting at the origin vorig and ending at node vs = s,
and Vps be the sequence of nodes on path ps. The set of paths
Pv is the set of all paths p for which v ∈ p. The set of paths
Pl is the set of all paths p for which l ∈ p.

Pv = {p|v ∈ Vp} ; Pl = {p|vin
l ∈ Vp and vout

l ∈ Vp} (2)

Remark 1. The path sets Pl where l is a link in Loutv form a
partition of Pv

Pv = ∪l∈Lout
v
Pl (3)

B. Modeling the flow of agents

The traffic flow at a node is measured by counting the
number of agents that pass through the node between an
arbitrary initial time tinitial and any given time t.

For a node v ∈ V \v0 (that is not the source) and path
p ∈ Pv , the arrival curve Apv (t) gives the total number of
agents on path p that arrive at node v during the time interval
(tinitial, t]. Similarly, for a node v ∈ V \S (that is not a sink)
and p ∈ Pv , the departure curve Dp

v (t) gives the total number
of agents on path p that leave node v during the time interval
(tinitial, t].

Remark 2. The arrival curve Apv (t) (resp. departure curve
Dp
v (t)) also gives the agent number of the last agent on path

p to arrive at (resp. leave) node v by t. Arrival and departure
curves are monotonically increasing: if t1 < t2, A(t2)−A(t1)
(resp. Dp(t2) − Dp(t1)) is the total number of agents who
arrive at (resp. pass) node v in the interval (t1, t2], and is
therefore non-negative.

Definition 1. Acceptable cumulative arrival and departure
curves A(tinitial, tfinal], D(tinitial, tfinal]
Given times tinitial and tfinal, a function on (tinitial, tfinal] is an

acceptable cumulative curve on (tinitial, tfinal] if it is continuous,
piecewise C1, and strictly increasing functions on (tinitial, tfinal].

The assumption that the cumulative curves are strictly
increasing is made for mathematical convenience, but can be
relaxed3. Cumulative curves are required to be C1 in order to
be able to define flows.

The outgoing flow λvp at a node v is the piecewise contin-
uous derivative of the departure curve Dv

p

λvp =
dDv

p

dt
(4)

Remark 3. Zero congestion-free travel time
Let πv, v be two consecutive nodes on path p. agents on path

3We could relax the assumption that the cumulative curves are strictly
increasing and allow for monotonically increasing curves. However, this
results in the time mapping function T (,πv)v introduced in section III-B being
a correspondence instead of a function and makes the analysis significantly
more complicated. Therefore, for mathematical convenience, we make the
assumption that the cumulative curves are strictly increasing.
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p leaving node v at time t arrive at node v at t+T(πv,v). For
all links (πv, v) and paths p ∈ Pv , without loss of generality
we set the congestion-free travel time T(πv,v) to be zero:
T(πv,v) = 0. This implies that:

Dπv
p = Avp ∀l = (πv, v) ∈ L, p ∈ Pv (5)

This modeling choice is made purely for mathematical
convenience, since the goal of this framework is to analyze
delays in the network. The total travel time for each agent
can be easily reconstructed a posteriori by adding the actual
congestion-free travel time for each link of the path traveled
by the agent.

Thus, for all links (πv, v) ∈ L and paths p ∈ P we have:

dAvp
dt

=
dDπv

p

dt
= λπvp (6)

dDv
p

dt
= λvp. (7)

C. Queuing and diverge model

This section defines the model dynamics for queuing and
the flow propagation through a junction, which will then lead
to a definition of the feasible departure curves that the model
admits.

The capacity µl (t) of a link l is the maximum flow that can
enter the link from its input node vin

l at time t. Road capacity
may vary with time due to weather conditions, accidents, or
other factors. Thus, capacity is a time varying quantity.

Requirement 1. Capacity constrained flows
The inflow entering a link is always no greater than the links
capacity. ∑

p∈Pl

λ
vin
l
p (t) ≤ µl (t) ∀t, l ∈ L (8)

If the flows arriving at a node v are larger than available
outflow capacity, a queue will form at node v.

Definition 2. Queue length nv,p (t)
We define the path queue length nv,p (t) at node v as the

number of agents on path p that arrive at node v by time t
and are yet to depart node v

nv,p (t) = Dv
p (t)−Avp (t) (9)

The total queue length nv (t) at node v is the sum of the path
queue lengths.

nv (t) =
∑
p∈Pv

nv,p (t) (10)

Remark 4. Let [Dv]−1 be the inverse of the departure curve
Dv . Since Dv is strictly increasing, tk = [Dv]−1(k) gives the
time at which agent number k leaves node v.

Definition 3. Delay in queue v
We define δv,p (t) as the delay encountered in queue v by the

agent which entered the queue at time t.

δv,p (t) = [Dv
p ]−1

(
Avp (t)

)
− t

= [Dv
p ]−1

(
Dπv
p (t)

)
− t (11)

As Dv
p is continuous, piecewise C1, and strictly increasing,

its inverse is continuous, piecewise C1 and strictly increasing.
Thus, as Dπv

p is also continuous, piecewise C1 and strictly
increasing, the function [Dv

p ]−1 ◦ Dπv
p is continuous and

piecewise C1, and delay δv,g is continuous and piecewise C1.

Remark 5.
If nv,p (t) = 0, then Dv

p (t) = Avp (t) =⇒ δv,p (t) = 0.
If nv,p (t) > 0, then Dv

p (t) < Avp (t) =⇒ [Dv
p ]−1

(
Avp (t)

)
>

t and δv,p (t) > 0.
Therefore,

∀t, δv,p (t) > 0⇔ nv,p (t) > 0 (12)

Requirement 2. First-in-first-out (FIFO) property
The model satisfies the FIFO property. The delay encountered
in queue v at time t is identical for all paths p in Pv .

δv (t) = δv,p (t) = [Dv
p ]−1

(
Dπv
p (t)

)
− t ∀t,∀p ∈ Pv (13)

FIFO property implies that agents exit the queue in the same
order that they enter the queue regardless of which path they
belong to.

t1 < t2 ⇔ [Dv
p1

]−1
(
Dπv
p1

(t1)
)
< [Dv

p2
]−1
(
Dπv
p2

(t2)
)

(14)

Interpreting Avp (resp Dv
p) as the identifier of the agent

which arrives in (resp. leaves) queue v at time t, we can see
that the queues respect the FIFO rule for each path p. Let x1

and x2 be two agents: agent x1 enters queue v at time tin1 such
that Avp

(
tin1
)

= x1 and leaves queue v at time tout1 such that
Dv
p (tout1 ) = x1, agent x2 entered in queue v at time tin2 such

that Avp
(
tin2
)

= x2 and leaves queue v at time tout2 such that
Dv
p (tout2 ) = x2. As Avp and Dv

p are both strictly increasing
functions, tin1 ≤ tin2 ⇒ x1 ≤ x2 ⇒ tout1 ≤ tout2 , which means
that if x1 is enters queue v before x2, it will leave v before
x2.

Proposition 1. FIFO implies conservation of the ratio of flows
If p1 and p2 are two paths in Pv such that λπvp1

, λπvp2
> 0, then

the ratio of their flows is conserved when exiting node v

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2 (t)
, ∀t ∈ (tinit, tfinal] (15)

Proof: Let t be an arbitrary time. The FIFO assumption gives
δv,p (t) = δv (t). By definition of delay δv,p (t),

Dπv
p (t) = Dv

p (t+ δv,p (t)) ∀p ∈ Pv
Taking the derivative with respect to t and using δv,p (t) =
δv (t),

dDπv
p (t)

dt
=

(
1 +

dδv (t)

dt

)
· dD

v
p

dt

∣∣∣∣
t+δv(t)

Using equation (7) we obtain,

λπvp (t) =

(
1 +

dδv (t)

dt

)
· λvp (t+ δv (t)) ∀p ∈ Pv

Therefore, it follows that

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2 (t)
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Fig. 1. Diverge model

Definition 4. Queue state ηv - state transitions
We define queue state as the boolean valued function ηv (t):

ηv (t) =

{
1 if δv (t) > 0
0 otherwise (16)

If ηv = 1, queue v is said to be active, or in active state
If ηv = 0, queue v is said to be inactive, or in inactive state

A queue state transition happens at time t if

∃ε > 0 s.t. ∀θ ∈ [−ε, ε], ηv (t− θ) = 1− ηv (t+ θ) (17)

When queue v is inactive, Dv = Dπv .

Definition 5. Link constraint cv,l (t)
Let v ∈ V \{v0 ∪ S} be a node which is not a source or a

sink. For all links l ∈ Lout
v , we define the link constraint cv,l (t)

as the ratio of arriving flows at time t on capacity at queue
v when this flow leaves queue v4.

cv,l (t) =

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(18)

Definition 6. Active link γv (t) and set of active paths Γv (t)
of a node
We define the active link γv (t) of a node v at time t as the

most constrained link 5 in Lout
v :

γv (t) ∈ arg max
l∈Lout

v

cv,l (t) (19)

We define the set of active paths Γv (t) in queue v as the set
of paths in the most constrained link γv (t)

Γv (t) = Pγv(t) (20)

Remark 1 gives Γv ⊂ Pv .

Requirement 3. Full capacity discharge property
The model satisfies the full capacity discharge property. For

4The dissipation rate of the point queue at the node is only governed by the
capacities of the outgoing links. This model can be extended to also impose
a discharge rate constraint based on the capacity of the incoming link, but
increases the complexity of the notation and the proofs.

5When there is a tie, one of them is chosen arbitrarily.

each node v and time t, if queue v is active at t, then the
active link γv (t) discharges at full capacity.

δv (t) > 0⇒
∑

p∈Γv(t)

λvp (t+ δv (t)) = µγv(t) (t+ δv (t))

(21)

With this last property, we complete the definition of the
dynamics model.

Definition 7. Feasible flows
A feasible flow λvp at a node v is a flow that satisfies the FIFO,
capacity constraint and full capacity discharge properties from
requirements 1, 2 and 3.

The definition of the initial conditions on the network
completes the definition of the model.

Definition 8. Initial times for each non-source node
Given a set of initial delays at each node δv (tinitial) ≥ 0,∀v ∈
V \(S ∪ {v0}) and an initial time tinitial, we define the set of
initial times over which the departure curves are defined for
each non-source node recursively as follows:{

t0,initial = tinitial for node v0

tv,initial = tπv,initial + δv (tπv,initial)
(22)

D. Existence and uniqueness of the solution to the model

Now that we have fully defined the model dynamics, we
consider the well-posedness of the model. In other words,
given a network, link capacities and the departure functions
at the source, we want to know whether the dynamics of the
model admits a unique solution.

Problem 1: General network problem
Input. An arborescence (V,L) with source v0 and sink set S,
capacities µl (t) ,∀l ∈ L, t ∈ [tinitial, tfinal], acceptable depar-
ture functions from the source Dv0

p ∈ D(tinitial, tfinal) ∀p ∈ Pv0

and initial delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a corresponding set of feasible flows exist for
all internal nodes v ∈ V \v0 and are they unique?

Theorem 1 stats that the solution to problem 1 both exists
and that the solution is unique, under certain conditions on
the departure curves at the origin and the link capacities of
the network.

Theorem 1. Existence and uniqueness of the solution to
problem 1

Problem 1 admits a unique solution under the following
conditions.
1) the path flows at the origin λ0

p (t) are piecewise polynomial,
2) link capacities µl are piecewise constant over time.

Note that neither of the assumptions of the theorem are
restrictive in a practical sense6.

6Neither of these assumptions are restrictive in a practical sense, because
any piecewise continuous function on a closed interval can be approximated
to an arbitrary accuracy by a polynomial of appropriate degree (Stone-
Weierstrass theorem [18]) and link capacities do not evolve in a continuous
manner. Link capacities are typically subject to discrete changes due to
incidents such as accidents and changes in weather.
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The next section is devoted to a constructive proof of
theorem 1. The general flow of the proof is as follows. Sections
III-A-III-C first develop a set of differential equations for
delays in the network. In section III-D, we then prove that a
unique solution to differential equation on delays also implies
a unique solution to problem 1. Section III-E proves that
the differential equations on the delay at each node always
admit an unique solution, which finally leads to the proof of
theorem 1.

III. A SOLUTION BASED ON TIME MAPPING

This section builds a constructive proof of theorem 1.
Throughout sections III-A-III-C, we require that the flows
at the origin are acceptable departure curves as defined in
definition 1 and that the outflows at each node satisfy the
model requirements (i.e. result in feasible flows as defined in
definition 7).

A. Local study of point queues

We begin by proving proposition 2, which gives an ana-
lytical expression for the derivative of the delay at node as a
function of its downstream capacities and outgoing flow at its
parent nodes.

Proposition 2. Evolution law of a single queue
If queue v is active at time t,

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1 (23)

The proof of this proposition requires the following lemma.

Lemma 3. Derivative of queue’s length nv with respect to
time
If node v is active at time t (i.e. t: γv (t) = 1),∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

=

 ∑
p∈Γv(t)

λπvp (t+ δv (t))

− µγv(t) (t+ δv (t)) (24)

Proof: By definition 2, nv,p (t) = Dπv
p (t)−Dv

p (t). Thus,∑
p∈Γv

dnv,p
dt

∣∣∣∣
t

=
∑
p∈Γv

(
dDπv

p

dt
− dDv

p

dt

)∣∣∣∣
t

=
∑
p∈Γv

(
λπvp − λvp

)∣∣
t

(25)

As queue v is active at time t, requirement 3 gives∑
p∈Γv

λvp (t+ δv,t) = µγv(t) (t+ δv (t)), thus we have

∑
p∈Γv(t)

dnv,p

dt

∣∣∣∣
t+δv(t)

=

 ∑
p∈Γv(t)

λπvp (t+ δv,t)

−µγv(t) (t+ δv (t))

(26)

Lemma 4. Discharge relationship between queue length and
delay

nv,p (t+ δv (t)) = Dπv
p (t+ δv (t))−Dπv

p (t) , ∀v ∈ V, p ∈ Pv
(27)

Proof: By definition 2 on queue length, we have nv,p (t) =
Dπv
p (t) − Dv

p (t), which evaluated at time t + δv,p (t) gives
nv,p (t+ δv,p (t)) = Dπv

p (t+ δv,p (t)) − Dv
p (t+ δv,p (t)).

From definition 3 on queue delay, we have Dv
p (t+ δv,p (t)) =

Dπv
p (t). Combining these two results we obtain,

nv,p(t+ δv(t)) = Dπv
p (t+ δ(t))−Dπv

p (t) (28)

We can now prove proposition 2.
Proof of proposition 2: Let t be a time such that ηv (t) = 1.

Equation (24) multiplied by
(

1 +
dδv
dt

∣∣∣∣
t

)
gives

(
1 +

dδv

dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

dnv,p

dt

∣∣∣∣
t+δv(t)

= (29)

(1 +
dδv

dt

∣∣∣∣
t

) ∑
p∈Γv(t)

λπvp (t+ δv (t))

−
(

1 +
dδv

dt

∣∣∣∣
t

)
µγv(t) (t+ δv (t)) (30)

Taking the derivative of equation (27) with respect to time and
summing over p ∈ Γv , gives the following equality(

1 +
dδv
dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

=

(1 + dδv
dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

λπvp (t+ δv (t))

− ∑
p∈Γv(t)

λπvp (t) (31)

Given equations (29) and (31) have the same left hand side,
equalizing their respective right hand sides and simplifying[(

1 +
dδv
dt

∣∣∣∣
t

)
·
∑
p∈Γv(t) λ

πv
p (t+ δv,p (t))

]
gives the following

equation:(
1 +

dδv
dt

∣∣∣∣
t

)
· µγv(t) (t+ δv (t)) =

∑
p∈Γv(t)

λπvp (t) (32)

Which gives the result,

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1 (33)

B. Time mapping

The evolution law stated above for any given node v de-
pends on the outgoing flows λπvp at the parent node. However,
this it not an input of Problem 1. In this section, we introduce
the notion of time mapping to obtain a modified law for the
delay evolution that replaces the outgoing flows at the parent
node with the outgoing flow at the origin.

1) Definition of time mapping functions: The evolution
law from proposition 2 gives a non-linear ordinary differential
equation (ODE) that governs the evolution of δv (t). The
evolution of delay encountered by an agent x entering queue
v at time t depends on the flows entering the queue at t and
the capacity of the active link(s) γv at time t + δv (t) when
agent x leaves the queue. The non-linearity of the ODE makes
directly computing the dynamics along a path algebraically
complex. Therefore, we introduce a time mapping function.
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Let v be an internal node of the network and its parent node
be πv . an agent leaving node πv at time t will leave node v at
time t+δv (t). We now introduce the following time mapping
function:

Definition 9. Node time mapping function T v,πv
We define the time mapping function T v,πv by

T v,πv : t 7→ t+ δv (t) (34)

an agent leaving node πv at time t will leave node v at time
T v,πv (t)

The notation T v,πv (variable ordering) is chosen for mathemat-
ical convenience with respect to the derivatives of the function,
as will be apparent in the rest of the discussion. In equation
(34), T v,πv takes a time with a physical meaning at the exit
of node πv on its right hand side, and gives back a time with
a physical meaning at the exit of node v on its left hand side.

Proposition 5. T v,πv is strictly increasing and bijective
The function T v,πv is strictly increasing and thus bijective
from its domain to its image. Its derivative is

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
> 0 (35)

Physically, this means that the FIFO assumption is respected:
i.e. an agent x2 entering queue v after another agent x1 will
also leave the queue after x1

Proof: Taking the derivative of equation (34) and applying
equation (23) in proposition 2 gives,

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
. (36)

The departure curves at the origin are strictly increasing
since they must be acceptable departure curves. The full
capacity discharge property from requirement 3 requires that
one outgoing link at each node discharges at full capacity.
Finally, these properties combined with proposition 1, which
states that the out flows at a node are proportional to the

inflows, give us the result that
dT v,πv

dt

∣∣∣∣
t

> 0.

Thus T v,πv is invertible and its inverse is an increasing
function7.

Definition 10. Node time mapping function Tπv,v Given an
internal node v, we define the function Tπv,v as the inverse
of T v,πv

Tπv,v ◦ T v,πv = 1 and T v,πv ◦ Tπv,v = 1 (37)

We now consider the unique path (v0, v1, · · · , vn−1, vn) which
leads from the source v0 to some node vn. As each node has
a unique parent, we can recursively trace the path from node
v back to the source node v0. Let tvn be a fixed time. If an
agent x leaves node vn at the time tvn , we can recursively
define the following:
1) tvn−1=T vn−1,vn(tvn) is the time that agent x left vn−1,

7If the acceptable set of departure curves D is relaxed to allow monoton-
ically increasing instead of strictly increasing functions, T v,πv becomes a
correspondence, and the mathematical treatment would be more involved.

⋯ 

⋯ 

⋯ 

⋯ 

vn

v0 v1

v2

v3

vn-1

vn-2

vx

vx

path to node vn

Fig. 2. Time mapping nodes

tvn=tvn−1 + δv(t
vn−1)

2) tvn−2=T vn−2,vn−1 (tvn−1) is the time that agent x left
vn−2, tvn=tvn−2 +δvn−1

(tvn−2)+δv(t
vn−2 +δvn−1

(tvn−2)) 3)
tvn−3=T vn−3,vn−2 (tvn−2) is the time that agent x left vn−3,
· · ·
As T v,πv and Tπv,v are bijective for all internal nodes v, we
can give the following definition

Definition 11. Time mapping function from and to the origin
T v,v0 and T v0,v

Let vn be a node, and (v0, v1, v2, · · · , vπn , vn) be a path from
the origin v0 to node v. We define the time mapping function
to the origin as the composition of the node time mapping
function on the path between the source and vn

T v0,vn = T v0,v1 ◦ T v1,v2 ◦ · · · ◦ T vπn ,vn (38)

an agent that leaves node vn at time t left the origin v0 at
time T v0,vn (t).

T vn,v0 = T vn,vπn ◦ · · · ◦ T v2,v1 ◦ T v1,v0 (39)

an agent that leaves the origin at time t will leave node vn at
time T vn,v0 (t)

A sample path from the origin v0 to a node vn is illustrated
in figure 2. We can now define the time mapping function
between any arbitrary pair of nodes.

Definition 12. Time mapping function between two arbitrary
nodes
We define the time mapping function T i,j between node i and
node j as follows.
1) There exists a path between nodes i and j (for example
nodes v2 and vn in figure 2),

T i,j =

{
T i,i+1 ◦ T i+1,i+2 ◦ · · · ◦ T j−2,j−1 ◦ T j−1,j if i ≺ j
T i,i−1 ◦ T i−1,i−2 ◦ · · · ◦ T j+2,j+1 ◦ T j+1,j if i � j

(40)
Let x be an agent that leaves node j at time t. T i,j (t) is the
time that agent x leaves node j.

2) There does not exist a path between nodes i and j (for
example nodes v2 and vx in figure 2),

T i,j = T i,v0 ◦ T v0,j (41)

Let xj be an agent that leaves node j at t. From definition 11
we know that xj leaves the origin at time T 0,j (t). Let xi be an
agent that also leaves the origin at time T 0,j (t). Then T i,j (t)
is the time that agent xi leaves node i.



7

Definition 13. Time mapping operator Ti,j

We define the time mapping operator Ti,j on the set F of time
dependent functions as follows:

Ti,j : F → F
f 7→ f ◦ T j,i (42)

We now consider the physical interpretation of T i,j .
2) Time mapping of model quantities: This section first

studies the relationship between departure curves at different
nodes and the time mapping function. We then define the time
mapped versions of the other quantities in the model. The time
mapping operators allow for mapping any quantity from one
node to the other. This definition of a time mapped quantities
thus allows any quantity to be defined with respect to the
source node of the network.

Proposition 6. Physical interpretation of the time mapping
function
Let p be a path, and (v0, v1, v2, · · · , vn) be a sequence of
consecutive nodes on the path.

Dvi
p = Dv0

p ◦ T v0,vi ∀vi ∈ p (43)

Let x = Dv0
p (tv0) be an agent on path p that leaves the origin

at time tv0 and tvi = T vi,0 (tv0)∀vi ∈ p.

Dv0
p (tv0) = Dv1

p (tv1) = · · · = Dvi
p (tvi) = · · · = Dvn

p (tvn)
(44)

Proof: Proof by induction on the length of the sequence k. If
k = 0, the result is trivial. Let k ∈ [1, i] be an integer. By the
induction hypothesis, we assume that the result is true for to
k = i−1, i.e. Dvi−1

p = Dv0
p ◦T 0,vi−1 . By the definition of path

delay δv,p, D
vi
p (t+ δvi,p (t)) = D

vi−1
p (t) ,∀t, which means

D
vi−1
p = Dvi

p ◦T vi,vi−1 . Composing both sides of the equality
with T vi−1,vi we get Dvi

p = D
vi−1
p ◦T vi−1,vi . Substituting the

induction hypothesis and simplifying the results completes the
proof.

Dvi
p = Dvi−1

p ◦ T vi−1,vi

= Dv0
p ◦ T 0,vi−1 ◦ T vi−1,vi

= Dv0
p ◦ T v0,vi

Equation (44) follows directly from equation (43).

Remark 6. As function T i,j is the inverse of T j,i, the operator
Tj,i is the inverse of Ti,j .

We can now reformulate the first equation of proposition 6 as
follows:

Proposition 7. Time mapping of departure curve Dv
p

Let i and j be two nodes on path p.

Di
p = Ti,j(Dj

p) (45)

Proof: Using definition 13 we have,

Ti,j
(
Dj
p

)
= Dj

p ◦ T j,i = Dj
p ◦ T j,0 ◦ T 0,i

= D0
p ◦ T 0,i = Di

p

Proposition 8. Time mapping and flows
Let v be a node on path p.

λip = Ti,j
(
λjp
)
· dT

j,i

dt
(46)

Proof: From the definition of flow, λvp =
dDv

p

dt
. The result

is obtained by simply taking the derivative of the equation
Di
p = Dj

p ◦T j,i (from proposition 7) with respect to time.

Remark 7. The time mapping and derivative operators do not
commute.

Definition 14. Time mapping of delay δij
Let v be an internal node8. We define the time mapped delay

in queue v at node πv , δπvv as the delay encountered in queue
v by an agent leaving node πv:

δπvv
.
= δv (47)

Let i be an arbitrary node and j be an internal node. We
define the time mapped delay in queue j at node i, δij as

δij
.
= Ti,πj

(
δ
πj
j

)
= δ

πj
j ◦ Tπj ,i (48)

Physically, if nodes i and j are on the same branch with i ≺ j
(resp. i � j), then δij (t) is the time that an agent which leaves
queue i at time t will be (resp. has been) delayed at in queue
j.

Definition 15. Time mapping for capacity
We define the time mapped capacity of a link l, µv

in
l

l as the
capacity encountered by an agent at queue vin

l in link l

µ
vin
l

l
.
= µl (49)

Let l be an arbitrary link and v an internal node. We define
the time mapped capacity of link l at node v as

µvl
.
= Tv,vin

l

(
µ
vin
l

l

)
= µ

vin
l

l ◦ T v
in
l ,v (50)

Physically, if link l and node v are on the same branch with
vin
l ≺ v (resp. vin

l � v), then µlv (t) is the capacity an agent
that leaves queue v at time t encountered (resp. encounters)
at link l.

Proposition 9. Physical interpretation of mapped delay and
mapped capacity
Let vj be an arbitrary node, p be a path, and
(v0, v1, v2, · · · , vn) be a sequence of consecutive nodes on
the path p. Also, let tvi = T vi,0 (tv0) ,∀vi ∈ p.

δv0
vj (tv0) = δv1

vj (tv1) = · · · = δvivj (tvi) = · · · = δvnvj (tvn)
(51)

Let l be an arbitrary link.

µv0

l (tv0) = µv1

l (tv1) = · · · = µvil (tvi) = · · · = µvnl (tvn)
(52)

Proof: Let i be an arbitrary node and j be an internal node.
From definition (14) for time mapped delay we have.

δij
(
ti
) .

= δj−1
j

(
T j−1,i

(
ti
))

= δj−1
j

(
tj−1

)
8An internal node is a node v which is neither a sink nor the source k ∈

K\({0} ∪ S)
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Therefore, δvivj (tvi) = δ
vj−1
vj (tvj−1) ,∀vi ∈ p, which proves

equation (51). The proof for equation (52) is identical.

Definition 16. Time mapping of active link and active paths
Let v be an internal node. We define mapped active link γπvv
as the active link for flow exiting node πv at queue v, and
mapped active paths Γπvv as the active paths for flow exiting
node πv at queue v.

γπvv
.
= γv ; Γπvv

.
= Γv (53)

Let j be an arbitrary node, we define the mapped active link
and mapped paths for flow exiting queue v at node j as

γjv = Tj,πv (γπvv ) ; Γvj = Tj,πv (Γπvv ) (54)

Physically, if node j and node v are on the same branch with
j ≺ v (resp. j � v), then γjv (t) is the active link that an agent
leaving node j at time t will encounter (resp. encountered) at
queue v, and Γvj (t) are the corresponding active paths.

Definition 17. Time mapped link constraint
Let v be a internal node and l ∈ Lout

v . We define the mapped
link constraint cπvv,l as the link constraint at link l for an agent
leaving node πv .

cπvv,l (t)
.
=

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(55)

=

∑
p∈Pl λ

πv
p (t)

µvl (t+ δv (t))

=

∑
p∈Pl λ

πv
p (t)

µπvl (t)
(56)

Let j be an arbitrary node, we define the mapped link
constraint for link l at node j as

cjv,l
.
= Tj,πv

(
cπvv,l

)
= cπvv,l ◦ Tπv,j (57)

cjv,l (t) =

∑
p∈Pl λ

j
p (t)

µjl (t)
· dT

πv,j

dt
(58)

Physically, if node j and node v are on the same branch
with j ≺ v (resp. j � v), then cjv,l (t) is the link constraint
that an agent leaving node j at time t will encounter (resp.
encountered) at link l.

Remark 8. The notation of the link constraint can be simpli-
fied for convenience as follows when time mapped.

cjv,l = cjl (59)

We use the simplified notation in the rest of the discussion.

Proposition 10. The mapping of link constraints and active
links is coherent
For all non-sink nodes j ∈ V \S, internal nodes v ∈ V \(S ∪
{0} and time t ∈ (tinitial, tfinal], we have

γjv (t) ∈ arg max
l∈Lout

v

cjl (t) (60)

Proof: Let v be an internal node and let tj be a time. Let tπv =
Tπv,j

(
tj
)
. Proving the proposition is equivalent to proving the

following set equality

arg max
l∈Lout

v

cv,l (t
πv ) = arg max

l∈Lout
v

cjl
(
tj
)

(61)

From the definition of the link constraint in equation (18) we
have

cv,l (t
πv )

.
=

∑
p∈Pl λ

πv
p (tπv )

µl (tπv + δv (tπv ))
(62)

By definition of µvl in equation (49), we have
µl (t

πv + δv (tπv )) = µvl (tπv + δv (tπv )) and defining
tv

.
= T v,πv (tπv ) = tπv + δv (tπv ), we obtain

µl (t
πv + δv (tπv )) = µvl (T v,πv (tπv )) = µvl (tv). Equation

(52) finally gives

µl (t
πv + δv (tπv )) = µjl

(
tj
)

(63)

Moreover, using equation (46) gives λπvp (tπv ) · dT
πv,j

dt

∣∣∣∣
tj

=

λjp
(
tj
)
. Summing on all paths p in Pl, we obtain∑

p∈Pl

λπvp (tπv ) =
1

dTπv,j

dt

∣∣∣∣
tj

·
∑
p∈Pl

λjp
(
tj
)

(64)

Substituting equations (63) and (64) in the right hand side of
equation (62) and using the time mapped link constraint from
equation (58), we obtain

cv,l (t
πv ) =

1

dTπv,j

dt

∣∣∣∣
tj

·
[∑

p∈Pl λ
j
p

(
tj
)

µjl (tj)

]
(65)

=
1

dTπv,j

dt

∣∣∣∣
tj

· cjl
(
tj
)

(66)

For all l ∈ Lout
v , cv,l (tπv ) and cjl

(
tj
)

are proportional (and
the proportionality ratio is independent from l). Therefore, the
arg max in equation (61) are the same. which concludes the
proof.

Definition 18. Capacity of the active link
For notational simplicity we denote the capacity of the active
link of an agent that enters queue v at time t as follows:

Qv (t)
.
= µπvγv(t) (t) (67)

= µvγv(t) (t+ δv (t))

= µγv(t) (t+ δv (t)) (68)

Definition 19. Time mapped capacity of the active link
Let v be a internal node. We define the time mapped active
link capacity Qπvv as the capacity of link γv as seen by an
agent at node πv .

Qπvv
.
= Qv (69)

Let j be an arbitrary node, we define the mapped active link
capacity for link γv (t) as seen by an agent at node j as

Qjv
.
= Tj,πv (Qπvv ) = Qπvv ◦ Tπv,j = Qv ◦ Tπv,j (70)

Physically, if node j and node v are on the same branch with
j ≺ v (resp. j � v), then Qjv (t) is the active link capacity
that an agent leaving node j at time t will encounter (resp.
encountered) at link γjv (t).

Definition 20. Time mapping of queue state
Let i be an arbitrary node and j be an internal node. We
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define the time mapped queue state of queue j at node i, ηij
as the queue state at queue j as seen by an agent at queue i

ηij
.
= Ti,πv

(
ηπvj
)

= ηπvj ◦ Tπv,i = ηj ◦ Tπv,i (71)

Physically, if queue i and node j are on the same branch with
i ≺ j (resp. i � j), then ηij (t) is the queue state an agent
that leaves node i at time t encounters (resp. encountered) at
queue j.

C. Global evolution of delay

We now have the necessary tools to define the evolution of
delays at any node of the network with respect to the flows at
any upstream node in the network.

Definition 21. First active upstream node
Let v be an internal node. We define the first active upstream
node of v as

Υj
v (t) = max

�

{
u|u ≺ v, ηju (t) = 1

}
(72)

For notational convenience we also define the following:

γ̂jv (t)
.
= γj

Υjv(t)
(t) (73)

Γ̂jv (t)
.
= Γj

Υjv(t)
(t) (74)

Q̂jv (t)
.
= Qj

Υjv(t)
(t) (75)

η̂jv (t)
.
= ηj

Υjv(t)
(t) (76)

Theorem 2. Evolution law for delay at an arbitrary internal
node v mapped to any node j
Given an arbitrary internal node v ∈ V \(S ∪ {0}) such that
queue v is active, if the flows at the origin are acceptable
departure curves and the model requirements are satisfied,
the evolution law for delay mapped to any upstream node
j ∈ V \S is

dδjv
dt

∣∣∣∣
t

=



∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
− dT 0,j

dt

∣∣∣∣
t

if v is the first active queue ∈ p∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γ̂jp(t) λ

j
p (t)

Q̂jv (t)
otherwise

(77)

Proof: Let t be a time and v be a node. Evolution law (23)
in proposition 2 gives

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

Qv (t)
− 1 (78)

By the definition of the time mapping functions we have,
δπvv (t)

.
= δv (t) , Qπvv (t)

.
= Qv (t) ,Γπvv (t)

.
= Γv (t). Thus,

equation (78) becomes:

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπvv (t)
− 1 (79)

Case 1: If node v is not the first active node of path p and
Υv (t) exists.

Let for an arbitrary node j, tj = T j,πv (t). Since all the nodes
between Υv (t) and πv are inactive by the definition of Υv (t),
we have

tΥv(tπv ) = tπv = t (80)

Furthermore, since η̂πvv (t) = 1, and the full capacity discharge
of active links (assumption 3), we have

∑
p∈Γ̂πvv (t)

λΥv(t)
p (t) = Q̂πvv (t) (81)

∑
p∈Γ̂πvv (t)

λπvp (t) = Q̂πvv (t) (82)

Thus: ∑
p∈Γ̂πvv (t) λ

πv
p (t)

Q̂πvv (t)
= 1 (83)

By replacing the constant 1 in equation (79) with the above
result we get,

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπvv (t)
−
∑
p∈Γ̂πvv (t) λ

πv
p (t)

Q̂πvv (t)
(84)

This gives us the result for j = πv . We will now map this
result to any node j ∈ V \S. By definition of time mapping,
we have

δjv = δπvv ◦ Tπv,j (85)

Taking its derivative with respect to time, we obtain

dδjv
dt

=

[
dδπvv
dt
◦ Tπv,j

]
· dT

πv,j

dt
(86)

dδjv
dt

∣∣∣∣
t

=

[∑
p∈Γ

πv
v ◦Tπv,j(t) λ

πv
p ◦ Tπv,j(t)

Qπvv ◦ Tπv,j(t)
−∑

p∈Γ
πv
Υvt
◦Tπv,j(t) λ

πv
p ◦ Tπv,j (t)

QπvΥv(t) ◦ Tπv,j (t)

 · dTπv,j
dt

∣∣∣∣
t

(87)

Equation (46) on flow mapping gives(
λπvp ◦ Tπv,j(t)

)
· dT

πv,j

dt

∣∣∣∣
t

= λjp (t) (88)

Substituting this result and the simple time mapping transfor-
mations of λ and Q into equation (87) gives the final result

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γj

Υv(t)
(t) λ

j
p (t)

QjΥv(t) (t)
(89)

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
−
∑
p∈Γ̂jv(t) λ

j
p (t)

Q̂jv (t)
(90)

Case 2: If node v is the first active node of path p, we
leave the constant 1 in equation (79) and follow the same
remaining steps as in case 1 to obtain the result.

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qjv (t)
− dT 0,j

dt

∣∣∣∣
t

(91)

Applying theorem 2 with j = 0, we see that the delays
with respect to the flows at the origin δ0

v are solutions to the
ordinary differential equations in definition 22.



10

Definition 22. Time mapped delay evolution differential equa-
tion
• If v is not an active node and the flow on its active link

γv0 is within capacity, then
dδ0
v

dt
= 0.

• If v is an active node or its active link γv0 is over capacity,
then

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(92)

where the time mapping functions are redefined from
delays as follows:

T j,0 =
∑

0≺i4j

δ0
i (93)

Proposition 11. Delay evolution does not depend on departure
curves
All the time mapped quantities in equations (92) can be
computed using only the initial delays, departure curve at the
origin and the link capacities. It does not require the departure
curves for any internal nodes v ∈ V \v0.

Proof: The time mapping function only depends on the delay
functions from definition 9. The time mapped flows can be
obtained using the time mapping function using proposition 8.
The other time mapped quantities are by definition constructed
using the time mapping function as given in section III-B2.

D. Equivalence of departure curves and delays
We prove Theorem 1 on the existence and uniqueness of

Problem 1 by first showing the equivalence between Problem 1
and Problem 2 (defined below), and then proving the existence
and uniqueness of Problem 2 in the next section.

Problem 2: General delay problem
Input. An arborescence (V,L) with source v0 and sink set S,
capacities µl (t) ,∀l ∈ L, t ∈ [tinitial, tfinal], departure functions
from the source Dv0

p ∈ D(tinitial, tfinal) ∀p ∈ Pv0
and initial

delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a solution to the time mapped delay function
from definition 22 for each node v ∈ V \v0 exist and is it
unique?

Theorem 3. Problem (1) and problem (2) are equivalent

Proof: The inputs to both problems are identical.
Therefore, we only need to prove that the existence of
a solution to one problem implies a unique and feasible
corresponding solution to the other problem.

(⇒) Suppose first that Problem 1 admits a solution.
By the definition of delay,

δv (t) = [Dv
p ]−1

(
Dπv
p (t)

)
− t, (94)

By the definition of time mapped delay we obtain,

δ0
v (t) = δπvv (t) ◦ Tπv,0 (t) (95)

= δπvv
(
[Dv

p ]−1
(
Dπv
p (t)

)
− [D0

p]
−1
(
Dπv
p (t)

))
(96)

= δv
(
[Dv

p ]−1
(
Dπv
p (t)

)
− [D0

p]
−1
(
Dπv
p (t)

))
, (97)

which can be made a function of only Dv
p by equation (94).

Theorem 2 then ensures that the delay functions thus defined
satisfy the time mapped delay evolution from definition 22,
i.e. a feasible solution to problem 2. Furthermore, the solution
is unique from equation (97), since Dv

p is a strictly increasing
function.

(⇐) Suppose now that Problem 2 admits a solution δ0
v (t).

We can build the corresponding departure curves Dv
p (t) as

follows.

D0
p (t) = δ0

0 (t) (98)

The inverse departure curve [D0
p]
−1 (x) can be constructed

from D0
p (t), since the departure curve is strictly increasing.

[Dv
p ]−1 (x) = [D0

p]
−1 (x) + T v,0

(
[D0

p]
−1 (x)

)
(99)

The departure curve Dv
p (t) can also be constructed from

[Dv
p ]−1 (x) due to the strictly increasing nature of the

functions.

We now show that the departure curves thus defined are
feasible departure curves, i.e. a feasible solution to problem 1.

1) D0
p is continuous and piecewise C1 because λ0

p is
piecewise continuous. Furthermore, since T j,0 is strictly
increasing for all nodes j, Dv

p is continuous and piece-
wise C1.

2) The capacity constraint on links is imposed by equation
(92) due to proposition 10.

3) The FIFO condition is satisfied by construction since the
delay δ0

v is not a function of the path p.
4) The full capacity discharge of the active queues is also

imposed by by equation (92) due to proposition 10.

E. Existence and uniqueness of the time mapped delay evolu-
tion

This section proves Theorem 4 on the existence and unique-
ness of the solution to Problem 2.

Theorem 4. Existence and uniqueness of the solution to
problem (2)
The solution to problem (2) exists and is unique on the time
interval of the problem [tinitial, tfinal], if the following conditions
are satisfied.

1) the path flows at the origin λ0
p (t) are piecewise poly-

nomial,
2) link capacities µl are piecewise constant over time.

The proof of this theorem is fairly technical and requires
several definitions and lemmas. Theorem 1 is a direct corollary
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of this result due to to Theorem 3 on the equivalence of the
two problems.

The main goal of the proof of Theorem 4 is to show
that there are a finite number of possible transitions, and
to integrate equation (92) across the transitions. The next
definitions and lemmas enables to establish these properties.

Definition 23. Depth of a node d (v)
We define the depth d (v) of a node v as the number of links
on the unique path from the origin v0 to node v

Definition 24. Link constraint comparators B(cl1 ,cl2 ) (t) and
Bcl (t)
Given a node v and two distinct links (l1, l2), we define the
boolean comparator B(cl1 ,cl2 ) (t) as follows:

B(cl1 ,cl2 ) (t) =

 1 if
∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
>

∑
p∈Pl2

λ0
p(t)

µ0
l2

(t)

0 otherwise
(100)

Given a node v and link l ∈ Lout
v , we define the boolean

comparator Bcl (t) as follows:

Bcl (t) =

{
1 if

∑
p∈Pl

λ0
p(t)

µ0
l (t)

> 1

0 otherwise
(101)

Definition 25. Time segment of constant link constraint J
A time segment J is a segment of constant link constraint if
and only if

1) for each each l ∈ L, the boolean Bcl (t) is constant on
J ,

2) for each each pair of nodes (l1, l2) ∈ L, the boolean
B(cl1 ,cl2 ) (t) is constant on J .

3) for each each l ∈ L, the time mapped link capacity
µ0
l (t) is constant on J .

Lemma 12. Under the assumptions on flows and capacities,
there are a finite number of segments of constant link con-
straint

Proof: Consider a pair of links (l1, l2). Since capacities are
piecewise constant and flows are piecewise polynomial, there
are a finite number of segments on which the capacities are
constant and flows are polynomial. On any such a segment,∑

p∈Pl1
λ0
p(t)

µ0
l1

(t)
and

∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
−

∑
p∈Pl2

λ0
p(t)

µ0
l2

(t)
are polynomials.

Therefore, the number of times each expression crosses zero
is bounded by the degree of the polynomial, which implies
that there are a finite number of segments of constant link
constraint.

Lemma 13. Constant active link
If J is a segment of constant link constraint, the active link
γ0
v of any node v is constant on J .

Proof: The result comes directly from the definition of a
segment of constant constraint.

Definition 26. Solution of depth n
A solution of problem (2) for depth n is a set of solutions
δv for all nodes v such that d(v) < n. It can be rigorously
defined because the equations for δv only depend on variables
associated with nodes of depth less than n.

Definition 27. Elementary time segment T e (v)
Given a node v and a solution of depth d(v)−1 (if v is not the
origin), an elementary segment for node v is a time segment
T e (v) such that
• T e(v) is a segment of constant constraint,
• If v is not the origin, for each node j ∈ V such that
d (j) < d (v), the node state ηj (t) is constant on T e(v).

Lemma 14. Single transition of node state on an elementary
segment
If there exists a solution to problem (2) up to depth d(v − 1),
and if T e(v) = [t0, tf ] is an elementary segment for node v,
then there is a solution δ0

v of the problem and node v admits
at most one transition in T e(v).

Proof: As for each node j ∈ V such that d (j) < d (v),
the node state ηj (t) is constant on T e(v), the first active
upstream node Υv is constant over time. Moreover, as T e(v)
is a segment of constant constraint, Lemma 13 gives that
active link γv and first active upstream link γ̂v are constant

on T e(v), and the sign of

∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

is constant on T e(v).

Let us now consider the following four cases:
1) B(cγ̂v ,cγv ) (t0) = 1, η0

v (t) = 1

=⇒ dδ0
v

dt

∣∣∣∣
t

> 0 and since the queue state is already

active no transition will occur.
2) B(cγ̂v ,cγv ) (t0) = 1, η0

v (t) = 0

=⇒ dδ0
v

dt

∣∣∣∣
t

> 0 and the queue state will immediately

transition to being active η0
v (t) = 1. No further transi-

tions will occur as shown above.
3) B(cγ̂v ,cγv ) (t0) = 0, η0

v (t) = 1

=⇒ dδ0
v

dt

∣∣∣∣
t

≤ 0 and the queue at node v starts

dissipating. There will be a transition in the queue state
to inactive η0

v (t) = 0 if the queue dissipates by time tf
and the queue state will remain active otherwise.

4) B(cγ̂v ,cγv ) (t0) = 0, η0
v (t) = 0

=⇒ dδ0
v

dt

∣∣∣∣
t

≤ 0 and the only possibility is the strict

equality case and the queue state remains inactive.

Lemma 15. Unique solution on an elementary segment
Let T e(v) be an elementary segment for node v. Assuming a
solution of depth d(v)−1 (if v is not the origin), then solution
of equation (92) for node v exists is unique on T e(v).

Proof: By Lemma 14, there can be at most one state transition
of node v in T e(v). This splits T e(v) into at most two sub-
segments where ηv = 0 or ηv = 1. From Lemma 13 we have
that active link γv and the first active upstream link Υv are con-
stant on T e(v). Therefore, the quantities Γv, Γ̂v, Qv and Q̂v
are constant on T e(v). Equation (92) states that
• If v is not an active node (ηv = 0) and the flow on its

active link γv is within capacity, then
dδ0
v

dt
= 0.
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• If v is an active node (ηv = 1) or it’s active link γv is
over capacity,

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(102)

As all the variables in equation (102) other than the flow
λ0
p (t) are constant during an elementary segment T e(v) and

the flow λ0
p (t) is continuous in t for all t ∈ T e(v), we can

show that equation (102) admits a unique solution on the
interval T e(v) by the Picard-Lindelöf theorem.

We have now all the ingredients to prove Theorem 4.
Proof of Theorem 4: We will prove the following proposition:
The time interval of interest (tinitial, tfinal] can be partitioned
into a finite set of elementary segments, and the solution to
problem (2) exists and is unique

The proof is done inductively over the depth of the network.
If the network contains a single node v0, [tinitial, tfinal] is an
elementary segment for v0, (tinitial, tfinal] ∈ T e (v0) and there is
a unique solution by Lemma 15. By the induction hypothesis,
let us now assume that (tinitial, tfinal] can be partitioned into
a finite number of elementary segments with respect to all
nodes of depth n and that the solution exists and is unique.
Let t0, t1, · · · , tm be times such that En = {(ti, ti+1],∀i ∈
[0,m − 1]} is the set of elementary segments for nodes of
depth n, and let δv for all v ∈ {V |d(v) ≤ n} be the unique
solution of depth n.

Let Kn be the non-empty set of nodes of depth n, and let
v ∈ Kn be a node in this set. Lemma 14 gives that for each
v ∈ Kn, there is at most one state transition on (ti, ti+1]. Let
Fn(v) be the set of times at which these transitions occur for
node v. Since there are m elementary segments, there can at
most be |Fn (v) | ≤ m transitions. If Fn is the set of times at
which the transitions for all nodes of depth n happen, |Fn| ≤
m ·Kn.

Let {t′0, t′1, · · · , t′m′} = {t0, t1, · · · , tm} ∪ Fn be the m′

segments created by splitting En at each of the state transitions
for nodes of depth n. The total number of segments m′ satisfies
m′ ≤ m · (Kn + 1), since |Fn| ≤ m · Kn. By the definition
of the t′i, for each i ∈ [0,m′] we have

• for all v ∈ Kn, ηv is constant on (t′i, t
′
i+1],

• (t′i, t
′
i+1] is a segment of constant constraint J , since it

is subset of an elementary segment, which is already by
definition a segment of constant constraint.

Thus, [t′i, t
′
i+1] is an elementary segment for all nodes of

depth (n + 1). Furthermore, by Lemma 15, this implies that
there is an unique solution to all nodes of depth n+ 1, which
concludes the proof.

This also completes the proof of Theorem 1.
Proof of Theorem 1: Problem 1 is equivalent to Problem 2

by Theorem 3 and Problem 2 admits a unique solution by
Theorem 4.

In some applications, it is also important to be able to
computing the total delay experienced by an agents that takes a
particular path. A provides analytical expressions for the total
delay along a path.

IV. APPLICATIONS

The solution to problem (1) models the flows in the network
given the departure time functions at the origin and the initial
delays by providing the departure time functions for all the
other nodes in the network. The solution can be obtained
by first solving problem (2), which provides the agent delay
function at each node. Practically, problem (2) easier to
directly solve than problem (1), because it corresponds to an
explicit automaton that is easy to implement for numerical
simulations.

Given a discretization time step ∆t and the initial conditions
δv (0), algorithm 1 gives a numerical solution to the discretized
problem (2). The algorithm numerically integrates the ordinary
differential equation (ODE) given in equation (92) over time to
obtain the solution. The algorithm relies on the fact that each
discretized time step is an elementary segment, because the
path flows and capacities are assumed to be constant (discrete
approximation) during each time step.

Algorithm 1 Calculate approximate solution of problem (2)
solveDelays(sourceFlow: λ0, initialDelays: δ0[0], capacities: µ)

for l ∈ Lout
0 do

for t = 1 to T do
update(vout

l , t, 1, 0)
end for

end for

update(node: v, timeStep: t, lastActiveConstraint: ω̂)
if v 6∈ S then

∆0
0,v[t] = ∆0

0,πv [t] + δ0
v [t− 1]

for l ∈ Lv do
µ0
l [t] = µl(t+ ∆0

0,v[t])

c0l [t] =

∑
p∈Pl λ

0
p[t]

µ0
l [t]

end for
γv[t] = arg maxl∈Lout

v
cv,l (t)

Γv[t] = Pγv(t)

ωv[t] =

∑
p∈Γv [t] λ

0
p[t]

µ0
l [t]

δ0
v [t] = max (0, (ωv − ω̂) ·∆t)

for l ∈ Loutv do
if δ0

v [t] > 0 then
update(vout

l , t, ωv)
else
update(vout

l , t, ω̂)
end if

end for
end if
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A. Single route with multiple bottlenecks

The first case we will study is that of a simple single
path network with multiple queues due to several capacity
bottlenecks, as illustrated in figure 3. This network can be
modeled as a tree with a single sink, i.e. a single path. Thus,
we will remove the path index from the notation in this section.
Each internal node v has a unique child, thus the internal nodes
can be indexed by the integers v0, · · · ,v n and the unique path
of the tree is [v0,v 1, · · · , vn, vs]. Moreover, as they model a
succession of queues on the same road, we can assume that
the capacity of each link (vi, vi+1) is constant and equal to
capacity of the corresponding road segment ∀v, µvi,vi+1 = µ.
From theorem 5, we know that the evolution of delay is given
by

d∆0
p

dt

∣∣∣∣∣
t

=


∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise
(103)

v0 v1 v2 vi vn vs

Fig. 3. MultipleBottlenecks on a road.

Since, the link with the smallest capacity will always be the
last active link µ̃ = min(µvi,vi+1

):

d∆0

dt

∣∣∣∣
t

=


λ0(t)

µ̃
− 1 if there is an active queue

0 otherwise
(104)

Thus, the evolution of total delay is equivalent to the
evolution law for one queue of capacity µ̃, and the network
can be simplified to a unique internal node v followed by a
link of capacity µ̃.

If the capacity of the links is time varying and µ̄(t) is the
capacity of the most constrained link that the agent entering
the network at time t is subjected to,

d∆0

dt

∣∣∣∣
t

=


λ0(t)

µ̄(t)
− 1 if p has an active queue

0 otherwise
(105)

B. Off-Ramp bottleneck

The next application is to compute the the dynamics of
a congested freeway off-ramp, using the off-ramp model
presented by Newell [11]. This example shows the versatility
of our framework, since Newell’s the model includes non-
FIFO dynamics at the off-ramp. This is accommodated by
introducing an additional node and state dependent capacities
on two links. The description of the model is as follows.
As seen in figure 4(a), there are two flows λh and λe that
enter the network, which has a capacity of µh. Therefore,
λh (t) + λe (t) ≤ µh. The exiting flow λe is restricted by
a capacity constraint of µe at the exit. There are four possible
states of queuing dynamics that can occur based on the flow
values. Figure 5 illustrates the transitions between the states.

(a)

0

sh

se

h

e

µh

µe

�0
h �0

e

�e
e

�h
h

µ=1

µh

(b)

0

sh

se

h

e

µh

µe

µr

�0
h �0

e

�e
e

�h
h

µ=1

(d)

0

sh

se

h

e

µh

µe

�0
h �0

e

�e
e

�h
h

µe

µh

(c)

0

sh

se

h

e

µh

µe

µr

�0
h �0

e

�e
e

�h
h

µ=1

Fig. 4. Off-Ramp model - (a) state 00 (b) state 01 (a) state 10 (a) state 11

Case 1: λe ≤ µe. If λe (t) ≤ µe, no queues will form in the
network and there will be no delay.
Case 2: λe > µe and λh ≤ µr. If λe (t) > µe, an exit
queue will start forming at the entrance to the exit as seen in
figure 4(b), which will then restrict the capacity of the freeway
from µh to µr.
Case 3: λe > µe, λh > µr and µr

λh
· λe ≥ µe. If the freeway

flow λh > µr, then a second freeway queue will start forming
behind the exiting agent queue, as seen in figure 4(c), since
the freeway demand is greater than the new reduced freeway
capacity µr. This second freeway queue will contain both
freeway and exiting agents and therefore the flow exiting the
queue will be subject to the first-in-first-out (FIFO) condition.
As a result, since the freeway flow λh is restricted to a rate
of µr, the exiting agent flow at the freeway queue will be
restricted to λ′e = µr

λh
· λe.

Case 4: λe > µe, λh > µr and µr
λh
·λe < µe. Now, if λ′e < µe,

then the off-ramp queue will start decreasing since the flow is
less than the capacity and the queue will disappear. Thus, in
this case, an off-ramp bottleneck created a second bottleneck
that in turn removed the off-ramp bottleneck, which is an
unstable equilibrium. Therefore, as explained in [11], there
will be a single queue of both freeway and exiting agents that
occurs at the off-ramp, as seen in figure 4(d), and the freeway
flow through the bottleneck will be λouth = µe

λe
· λh according

to the FIFO condition.
The uniqueness and existing properties hold even with the

state dependent capacities, since the flows are assumed to be
piecewise polynomial and therefore lead to a finite number
of state transitions. This implies that the link capacities are
piecewise constant. Therefore, we can solve for the delays in
this network using algorithm 1. Furthermore, this subnetwork
can be part of a larger network over which we wish to compute
the system delays.
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�h > µh

µr

�h
· �e < µe

Qe;

Qh

queue e

queue h

queue e
Qe, Qh

queue appears

queue disappears

�e > µe > �e · µr

�h

�e · µr

�h
� µe

queue h

�e > µe and

Fig. 5. State transitions in the off-ramp model. The four states
∅, Qe, (Qe, Qh) and Qh correspond respectively to the cases (a), (b), (c)
and (d) from figure 4.

Figure 6 shows the flow and delay profiles for a numerical
example of the off ramp network with the following link
capacities: µE = 5, µH = 30 and µ = 45. We can observe the
following state transitions during the simulated time window.
• At t=92 Appearance of exiting agent queue.
• At t=121 Appearance of freeway queue.
• At t=222 Disappearance of exiting agent queue.
• At t=372 Disappearance of freeway queue.
One interesting observation is that freeway congestion

caused by the exiting agent bottleneck persists well beyond
the time at which the exiting agent queue disappears.
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Fig. 6. Simulation of states and delays (δE , δH) as functions of time t, given
the incoming flows at the off ramp, and road parameters: µE = 5, µH = 30
and µ = 45

V. CONCLUSION

This article presented a mathematical framework for mod-
eling traffic flow through a network with a single source and
multiple sinks. The model satisfies the standard laws of flow
dynamics and is shown to lead to a well-posed dynamics
problem with an unique solution. The main benefit of this
framework is the ability to analytically prescribe the delays
at each junction as a function of the boundary flows at any
other upstream junction and the delay over any sub-path with
respect to the boundary flow at the source node of the sub-
path. This is a critical requirement when solving control and
optimization problems over the network, since solving an

optimization problem over simulation models is generally in-
tractable in terms of computational complexity. The versatility
of computing the delays as a function of the inflow at any point
in the network is achieved though a mathematical framework
for time mapping the delays. An algorithm for computing
a discrete approximation of the system numerically is also
provided. The application of the framework is illustrated using
two examples, a single path consisting of multiple bottlenecks
and a diverge junction with complex junction dynamics. The
main limitation of this framework is the limitation to single
source networks. The time mapping framework presented can
however be generalized to any non-cyclic (tree) network. Thus,
the next step would be to introduce merging dynamics into the
model to obtain a more general network model.
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APPENDIX A
TOTAL PATH DELAY

In some applications, it is also important to be able to computing the total
delay experienced by an agents that takes a particular path. In this section,
we provide analytical expressions for the total delay along a path.

Definition 28. Total delay of a path p
We define the total delay ∆0

p encountered on a path p at time t as the
total delay encountered by agent on path p that enters on the network at
t throughout its entire path to the sink node.

∆0
p (t) = [D

vpN
p ]−1

(
D0
p (t)

)
− t (106)

where vpN is the last non-sink node on path p. We define the time mapped
total delay ∆j

p as the total delay in path p as seen by an agent that is at
node j at time t.

∆j
p = Tj,0

(
∆0
p

)
(107)

Proposition 16. Total delay ∆j
p as a function of queue delay δ

The time mapped total delay ∆j
p encountered on a path is equal to the sum

of delay encountered by the agent on its path.

∆j
p

(
tj
)

=
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

(108)

where tj is the time that the agent is at node j.

Proof: Let ti = T i,j
(
tj
)
. We obtain the result as follows using the

definition of delay and a series of time mappings.

LHS = ∆j
p

(
tj
)

= Tj,0
(
∆0
p

(
tj
))

= ∆0
p

(
T 0,j

(
tj
))

= ∆0
p

(
t0
)

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− t0

RHS =
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

=
∑

v∈Vp\({0}∪S)

δπvv (tπv )

=
∑

v∈Vp\({0}∪S)

[Dvp ]−1
(
Dπvp (tπv )

)
− tπv

=
∑

v∈Vp\({0}∪S)

[Dvp ]−1
(
Dπvp (tπv )

)
− [Dπvp ]−1

(
Dπvp (tπv )

)
=

∑
v∈Vp\({0}∪S)

[Dvp ]−1
(
D0
p

(
t0
))
− [Dπvp ]−1

(
D0
p

(
t0
))

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− [D0

p]−1
(
D0
p

(
t0
))

= [D
vpN
p ]−1

(
D0
p

(
t0
))
− t0

Definition 29. Active link of the last active queue of a path p at time t
(ap (t))
Let p be a path and t be the time that an agent departs node j. We define
the last active queue of the path p time mapped to passing node j at time t
as

ajp (t) = max
�

{
v ∈ Vp|ηjv (t) = 1

}
(109)

For notational convenience we also define the following:

γ̃jp (t) = γj
a
j
p(t)

(t) (110)

Γ̃jp (t) = Γj
a
j
p(t)

(t) (111)

Q̃jp (t) = µj
γ̃
j
p(t)

(t) (112)

Theorem 5. Evolution law for total delay ∆0
p

Let p be a path, t be a time. The evolution law for total delay at time t is

d∆0
p

dt

∣∣∣∣∣
t

=


∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise

(113)

Proof: Taking the derivative of equation (108) for j = 0, we obtain

d∆0
p

dt

∣∣∣∣∣
t

=
∑

v∈Vp\(S∪{0})

dδ0
v

dt

∣∣∣∣
t

(114)

=
∑

{v|v∈Vp\(S∪{0}),γ0
v(t)=1}

dδ0
v

dt

∣∣∣∣
t

(115)

Note that γ0
v (t) = 1 implies node v is active when the source flow at time

t reaches node v. From theorem 2 with j = 0 we have,

dδ0
v

dt

∣∣∣∣
t

=



∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−

∑
p∈Γ̂0

v(t) λ
0
p (t)

Q̂0
v (t)

otherwise

(116)
Plugging this into equation (115) gives a telescopic series, since it only
considers the active nodes of the path and Q̃0

p (t) gives the capacity of the
last active link of path p. Thus, we obtain

d∆0
p

dt

∣∣∣∣∣
t

=

∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 (117)

If p does not contain an active queue there is no queuing in the path, which
means there is no change in the queue length and therefore no change in the
delay.

Remark 9. Note that this theorem can be extended to any subpath pij ∈ p
such that

d∆i
pi,j

dt

∣∣∣∣∣
t

=

∑
p′∈Γ̃ipij

(t) λ
i
p′ (t)

Q̃ipij (t)
− 1 (118)
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