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(a) L.A. highway network and its graph model. (b) Selected sources (blue) and destinations (red) for the Los Angeles highway network

Fig. 6: Los Angeles highway network.

(a) Greedy method (b) Adjoint method (c) Adjoint method with backtracking line search

Fig. 7: Results for the different methods, with increasing α. The red solid and dotted lines represent, respectively, the social optimum (α = 1)
and the selfish response (α = 0).

minimum with lower objective value than that with line search.
This may be a result of line search being too conservative:
Requiring the Armijo rule to be satisfied at each iteration
may prevent the method from exploring the search space. The
greedy method performs surprisingly well, and is within 3% of
the (normalized) objective value of the adjoint method. Finally,
it is worth observing that even when controlling a fraction of
the population as small as � = 0:1, the improvement in the
social cost function can be significant (70% reduction in the
distance to social optimum).

IX. CONCLUSION

We studied a problem of repeated routing under selfish
response, in which the selfish players follow online learning
dynamics given by the Hedge algorithm. Such dynamics offer
a realistic model of behavior, and are asymptotically consistent
with Nash equilibria. Subject to these dynamics, the prob-
lem of optimal routing is non-convex, and cannot be solved

exactly in general. We proposed two methods to approach
this non-convex problem, and analyzed their computational
complexity and their performance on numerical examples: A
greedy method and a local search method based on the adjoint
system. In particular, we derived the adjoint system equations
associated to the Hedge dynamics.

Our numerical experiments shed light on the tradeoffs and
the empirical performance of each method: The adjoint method
has the best performance, but its complexity is quadratic. The
greedy method, while limited due to its myopic nature, is
simple to implement and performs well empirically.

While our application was specific to the routing game,
the derivation of the Hedge adjoint equations is generic and
can be applied to any optimal control problem where a
selfish population is assumed to follow Hedge dynamics. Our
experiments indicate that the adjoint method works well in
practice, and encourages further investigation into the numer-
ical performance on other applications.
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Fig. 8: Average delay (minutes) per vehicle and per day, with α = .1,
as a function of time.
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APPENDIX A
THE MIRROR DESCENT ALGORITHM

Consider the problem of minimizing a convex function f on a convex
feasible set X . The mirror descent algorithm minimizes, at each iteration,
a local approximation of the function f , as detailed in Algorithm 4, where
βi is a predefined sequence of decreasing step sizes. We can also use a line
search method for choosing the step sizes, as discussed in Appendix B. The
mirror descent method is guaranteed to converge to the set of minimizers
arg minµ∈X f(µ) for example when βi decreases to 0 and

∑∞
i=1 βi =∞,

see for example [15].

Algorithm 4 Mirror descent algorithm
for t ∈ N do

Compute a subgradient `[i] ∈ ∂f(µ[i])

µ[i+1] = arg min
µ∈X

[〈
`[i], µ− µ[i]

〉
+

1

βi
Dψ(µ, µ[i])

]
(14)

Here, Dψ is the Bregman divergence induced by a strongly convex function
ψ, and given by Dψ(µ, ν) = ψ(µ) − ψ(ν) − 〈∇ψ(ν), µ− ν〉. The choice
of the Bregman divergence can be adapted to the geometry of the feasible
set X . In particular, if X is a simplex, X = ∆n, and we choose ψ to be
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the negative entropy, ψ(µ) = H(µ) :=
∑
i µi lnµi, then the corresponding

Bregman divergence is the KL divergence, DKL(µ, ν) :=
∑
i µi ln µi

νi
, and

the solution of the mirror descent update in Algorithm 4 is exactly the Hedge
update given in equation (1), see [15]. Furthermore, when X is a cartesian
product of simplices, X = ∆P1 ×· · ·×∆PK , then we can take ψ to be the
sum of negative entropies, ψ(µ) =

∑K
k=1H(µk), in which case the Bregman

divergence is the sum of KL divergences, Dψ(µ, ν) =
∑K
k=1DKL(µk, νk),

and the minimization problem (14) decomposes into K minimization prob-
lems, each on a simplex Pk .

APPENDIX B
LINE SEARCH IN MIRROR DESCENT

In the standard implementation of Hedge, we run the algorithm with
a predefined sequence of step sizes, which results in a relatively slow
convergence to the desired precision. Line search is a method for adaptively
choosing the step size βi at each iteration. We implement the backtracking
line search method, commonly used in projected gradient descent and analyzed
for example in Chapter 9 in [26]. We adapt this method to Hedge. This is
summarized in Algorithm 5.

Algorithm 5 Backtracking line search for Hedge with Armijo coefficient
a ∈ (0, 1

2
), backtracking rate b ∈ (0, 1)

1: Input: previous iterate u[i], x[i] and previous gradient vector g[i] =
∇uJ(x[i], u[i]).

2: Initialize βi = βinit
i

3: while
J(x[i+1], u[i+1]) ≥ J(x[i], u[i]) + a

〈
g[i], u[i+1] − u[i]

〉
do

4: Solve for u[i+1]

ukp
[i+1] ∝ ukp

[i]
exp(−βigkp

[i]
)

5: Update x[i+1] by solving H(x[i+1], u[i+1]) = 0
6: Update βi+1 ← bβi

The Armijo condition in step 4 above can be justified by writing the first
order Taylor approximation of J around the previous iterate: J(X(u), u) =
J(x[i], u[i]) +

〈
g[i], u− u[i]

〉
+O(‖u− u[i]‖2), and evaluated at u[i+1],

J(x[i+1], u[i+1]) ≤ J(x[i], u[i])+〈
g[i], u[i+1] − u[i]

〉
+ C‖u[i+1] − u[i]‖2, (15)

for some positive constant C. Now since u[i+1] is, by definition of the Hedge
update, the minimizer of

〈
g[i], u− u[i]

〉
+ 1
βi+1

Dψ(u, u[i]), we have〈
g[i], u[i+1] − u[i]

〉
+

1

βi+1
DKL(u[i+1], u[i])

≤
〈
g[i], u[i] − u[i]

〉
+

1

βi+1
DKL(u[i], u[i]) = 0.

Thus
〈
g[i], u[i+1] − u[i]

〉
is negative, and

Dψ(u[i+1], u[i]) ≤ −βi+1

〈
g[i], u[i+1] − u[i]

〉
≤ βi+1‖g[i]‖∞‖u[i+1] − u[i]‖1.

Finally, by Pinsker’s inequality, we have DKL(u[i+1], u[i]) ≥ 1
2
‖u[i+1] −

u[i]‖21, and it follows that 1
2
‖u[i+1] − u[i]‖21 ≤ βi+1‖g[i]‖∞‖u[i+1] −

u[i]‖1. Simplifying, we have

‖u[i+1] − u[i]‖1 ≤ 2βi+1‖g[i]‖∞,

which proves that as βi+1 → 0, ‖u[i+1] − u[i]‖ → 0, and the Taylor
bound (15) is eventually dominated by the Armijo bound

J(x[i], u[i]) +
〈
g[i], u[i+1] − u[i]

〉
+ C‖u[i+1] − u[i]‖2

< J(x[i], u[i]) + a
〈
g[i], u[i+1] − u[i]

〉
,

for ‖u[i+1] − u[i]‖ small enough, which justifies using the Armijo rule for
Hedge.
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