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allowable control inputs that can be applied as a function of the resolution and analysis [22]. It has also been used for underwater
continuous state, to keep the system inside the maximal controllableéechnologyfive-dimensional reachability computations have been
set. implemented on a glider submarine at the French Department of
The benét of this approach, sometimes calleeuchability Defense [23]. Hardware implementation of reachable set
analysis, s that it provides a proof (for the mathematical models computations has led to successful demonstrations of automated
used) that the system will remain inside the envelope and reach themmanned aerial vehicles corflict avoidance [24]. This technology
target. This is to be contrasted with Monte Carlo methods, which dowas implemented ina T33 aircraftand a F15 aircraft, and a successful
not provide any guarantee for trajectories that are not part of thecorflict resolution maneuver was realized, demonstrating the
simulation. Monte Carlo methods have historically been used to feasibility of the method for manned aircraft [24,25]. This provides
explore the possible trajectories a system might follow. The more evidence that an actual implementation on a civilian airliner of the
finely gridded the state space, the more information the Monte Carloschemes presented in this paper is feasible and realistic, which is the
simulations will provide. However, this class of methods is motivation for this paper.
fundamentally limited in that it provides no information about initial This paper presents several contributions. First, a model of aircraft

conditions in between the grid points. A second fienef longitudinal dynamics is presented and analyzed. The model is
reachability analysis is that it complements the traditional gain- written in such a way that it is possible fmd an analytical
scheduled linear control design methods used for comméigfl expression of the optimal input to apply in the reachability
systems[5]. As will be seen in this paper, reachability analysis can becomputation of interest. This is a remarkable property given the
applied to analyze the behavior of the aircraft over thefligtht model; in general, optimal Hamiltonians in HJ PDEs have to be
envelope and can generateat restrictive control filter that is only computed numerically. The second contribution is the application of

applied if the aircraft state gets close to the boundary of the maximalthe technique to successive phases of landing. The novelty of this
controllable set. Inside the maximal controllable set, traditional result lies in the hybrid reachability computatiorfiedd for which
controllers designed to optimize, for example, performance orfew nonacademic examples (such as this one) exist. The hybrid
passenger comfort would be applied. Finally, the reachable setature of the model makes it possible to compute the maximal
framework encompasses systems with inputs; thus, control problemgontrollable set, despite the fact that the system switches dynamics
with cooperating inputs or differential game problems with several times through the landing. Finally, these results are extended
competing inputs (from different players) can be treated effectively. to higher dimensional models, which incorpor dynamics in

The validity of this proof goes back to the discovery of the theform ofamore realistic description of the evolution of the angle of
viscosity solution [6,7] of the HJ PDE. Before this, methods based on attack.
differential games [8] (or optimal control, for only one player) This paper is organized as follows: Tirst section of this paper
provided, at best, cefitates that speft trajectories of the system  presents the model of the longitudinal dynamics of the aircraft, as
stayed inside of the envelope but did not provide guarantees on setswell as the dnition of the safety envelopes in the different modes of
The advent of level set methods-{4] enabled numerical the aircraft (e.g., desceffiare, go-around) with corresponding slat
computation of the viscosity solution, with a theoretical proof of andflap ddlections. The following section presents the method used
convergence of the numerical result to the viscosity solution. In to do the veffication and the corresponding input to apply to keep the
parallel,viability theory [12] provided engineers with an equivalent aircraft inside th@ight envelope. This method is then generalized to
approach to solve the same problems, leading to a new suite ohybrid systems and applied to the succes&ieand slat déections
numerical schemes [13] developed to solve differential gameof a DC9-30 infinal approach. Finally, current research directions
problems [14]. These numerical schemes have also been proved twith higher dimensional models are shown. The model of the aircraft
converge to the viscosity solution of the HJ PDE, providing the sameis refined, and the numerical technique is adapted accordingly. The
guarantees as level set methods. These methods have now beappendix presents the proof of optimality, which is necessary for the
extended to treat hybrid systems, which combine continuous statesolution of the HJ PDE.
and discrete state dynamics{18].

When the actual implementations of these methods became Physical Model

operational in the late 1990s, the computational power limited such This section presents the equations of motion used to model the

icn(zmrgsfaarﬁgr]\fs tgﬂg“’%:'ﬁ;gigg% Sggsrtfnl]%nj—ls’cl)\i]ér/'\r:g\?v”g]nn;gjleaircrafts longitudinal dynamics. The aerodynamic properties of the
P puting p aircraft are derived from empirical data as well as fundamental

computations for systems with continuous state dimensionuptofour_ . =~ ; . - .
or ﬁ?/e depending on the mathematical characteristics pof theprlnmples_. The aircraft envelop(_as are derived using the aircraft
characteristics as well as regulations.

dynamics considered. This is a major technological breakthrough
that now allows the treatment of problems involving realistic models
of physical systems. This gives aerospace engineers anEquationsof Motion
unprecedented ability to use these methods for analysis and safety The longitudinal dynamics of an aircraft are modeled using the
verification of aircraft control systems, which are inherently hybrid, frame of reference shown in Fig. 1. The state variables are the
i.e., their evolution exhibits continuous behavior (position and velocity, theflight-path angle, and the altitude. The state of the
velocity change) as well as discrete behavior (autopilot mode systemis callest”  V; ;z.A point mass model is considered in
switches). For example, the motion of a landing aircraft is describedwhich the aircraft is subjected to forces of thrust, lift, drag,rand
by continuous variables, but it undergoes different disdiate
settings during landing, which have distinct dynamics and can be
viewed as discret@odes that the pilot selects by pushing a lever or
button with the corresponding setting. Interestingly, landing is one of
the few portions of thtight that is not fully automated; in particular,
flap delection is still operated manually by pilots.
Aerospace engineering offers along list of examples of algorithms
or methods that slowly made their way from research to
implementation onboard physical aircraft. The most famous
example is probably Brysémminimum time to climb control history
computation for a supersonic feghter (the F4) [19]. Reachability
analysis is one such example, and it is now at a stage where system
implementations have become possible. It has been used in research

on air trafic control, forenhanced traffic management system data Fig. 1 Point mass force diagram for the longitudinal dynamics of the
classfication [20], for soft wall analysis_[21], and in dbct aircraft.
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due to gravity. The equations of motion for this system read Glide slope signal
2 3 2 . 3 R
q \Y 1 T cos D ;V mgsin
a4 5 4L Tsin L 5V mgcos 5 @
z Vsin

Glide slope capture

In Eq. (1),T and are the inputs. In some modes (i.e., portions of
landing), T might befixed at nominal value$;y, or T, Where
Tige 0:2 Tpa andT,, is the maximal thrust. Although the pilot
has control over elevator filection, the model assumes that it can
control directly. A realistic model would assume that the pilot has

Flare

control over . This is unfortunately not possible given the currently Rollout
available computing resources. The validity as well as limitations of ... R

these assumptions will be discussed in the last section of this paper. Fig. 3 Typical landing profile.

Aerodynamic Properties of the Aircraft factor is corrected by 0.95 for the landing figoration. The

In a commonly accepted approximation (see, for example, efficiency factor quanies the difference in performance between
[26,27]), lift and drag depend on the tflight parameters andV as idealized lift (available from lifting line theory [28]) and actual lift
well as on numerous characteristics of the aircraft. The model of (Which accounts for the assumptions made in the idealized case).
these characteristics is expressed by the dimensionless lift and drag In @ typical autoland maneuver (Fig. 3), the aircraft begins its

coeficients déned by approach approximately 10 n mile from the touchdown point. The
aircraft descends towards the glide slope, an inertial beam that the
c D and C L @ aircraft can track. The landing gear is down, and the pilot sets the
P 1=2 sv2 Lo1=2 sv? flaps at thdirst high-lift corfiguration in the landing sequence. The

autopilot captures the glide slope signal around 5 nmile from the
The coeficientC, can be computed for an ideal lift using thin airfoil  touchdown point. The pilot increaséisp delection to effect a
theory.C, is a linear function of given by descent without increasing speed (indicated by largeithe flap

settings). The pilot steps tfiaps through the differefiap settings,

C C, G ®) reaching the highest flection when the aircraft reaches 1000 ft in
altitude. Atapproximately 50 ft, the aircraft leaves the glide slope and
begins thdlare maneuver, which allows the aircraft to touch down
smoothly on the runway with an appropriate descent rate. The
deflection of the slats is correlated with theéldetion of theflaps in
an automated way.

Flight operating conditions are fiteed by the limits of aircraft
performance, as well as by airport and FAA regulations [29]. The
aerodynamic envelope for each discrete mode is the set of states in
r‘?/vhich the aircraft should remain. The envelope is associated with a
Setof operating conditions, which are allowed ranges of input signals
for each discrete state. Given this set of operating conditions, the
controllable subset of the envelope idided as that subset from
c? , yvhich it is possible to maintain the aircraftin the envelope. States not
AR 095 e Cb K Ci (4) in the controllable subset are such that no matter what input the pilot
: chooses, the pilot will not be able to prevent the state from exiting the

whereCp accounts for the drag of the body of the aircraft, the slats, €nvelope. ] )
the flaps, and the landing gear. The second term accounts for drag During descent andiare, the aircraft proceeds through successive
induced by litK 1= AR 0:95 e and is a constant (its 1lap and slat settings. In each of these settings, the safe seéxlde
numerical value will be given later for a spezhircraft). AR isthe Dy boundsonthe state variables. The maximal allowed sfgeth

aspect ratio of the aircraft fimed by AR  b?=S. The eficiency dictated by regulations. The minimal speed is related to the stall
speed bWpin  1:3 V- The minimal speed is an FAA safety

T T recommendation; the aircraft might become uncontrollable below
Vgan- The stall speed is given by the formula

0

whereC_ is the lift coeficient at zero angle of attack aGd is the

lift coefficient slope. Figure 2 shows a typicdiaé model o2,

for differentflap and slat d&ections as well as the corresponding stall
angles ., above which Eq._(3) is not valid and the aircraft might
become uncontrollable. As se&}, increases witlilap ddlection,

but the stall angle,,,x decreases. The stall anglg, increases with
slat ddlection. The terminology used in tiigure and the diection
angle values correspond to a DC9-30 aircraft. For drag, becaus
coeficients are not available, estimates have to be used. A procedu
advocated by Kroo [27] is followed. From lifting line theory [28], the
drag coeficientCy can be computed using the drag polar:

Co Cp

3

CL (Dimensionless Lift Coefficient)

25 : : e ! S
2mg
.9 V. 5
Al o _ ] stall SCLmax ( )
g _ o
- Here, C,_ - C_, C_ m is the maximal lift coefcient
T - 1 (denoted by a dot in Fig. 2) obtained at the stall angjg.
During descent, the aircraft tracks the glide slope (GS) and must
GL Slats deflected .. | remain within d of the glide-slope anglegs. As a result, the

flight-path angle iflare mode can range from,, s d to

max s d . As the aircraft reduces its descent rate to land
] smoothly (in the last 50 ft before touchdown), this range becomes
flap deflection =50 ss d ;0 deg. By regulation, theflight-path angle is thus

flap deflection: =25 . = : -
clean Wingp =0 ~ restricted to lie in the interval ;,;0 deg. (Typical values for

Slats retracted

0.5

landing are d 0:7 deg, s 3:0 deg; thus, i
1 : : angle of attack  (deg) 3:7 deg. Note that this is a conservative approximation. Other
0% 0 5 10 15 20 25 studies have suggested to extend this range Godeg; 0 deg."

Fig. 2 Lift coefficient model for three different flap settings( 0, 25,
and 50 deg) and for deflected/retracted slats. Charlie Hynes, private communication.
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During descent anthre, thrust should be atidle, butthe pilotcanuse andletx F x;u be the systefs dynamics, where the input U
the full range of the angle of attack. In the following computations, tries to keep the system from reaching the unsafe sdineDa

we willthus use ,;,; 0 asthe setfor, which encompassésare and continuous function (sometimes called an implicit surface function)
approach. A more detailed analysisofthesets d ; o5 d Jo: X R such that
and ;0 and the corresponding switches is provided in [30].
8 Vo X XJyx O
%V Vnin faster than stall speed
Parameters: V' Vna Slower than limit speed V, is the zero sublevel set of the level set functiprx . In earlier
> mn limited descent flight path 5 work [3] it is shown that, by solving the terminal value HJ PDE,
<0 monotonic descent DJ x;t  min0;H x;D,J x;t 0 forx X; t<O0
Inputs: T  Tige thrust at idle . Ix0  Jp X forx X: t 0
min; max TUll range available ®)
At touchdown (forz 0 and with a negative descent velocity where
z 0 <0), the restrictions on the parameters are the same as in the
previous paragraph for the state space except for the descent velocity. Hxp maxp’ fxu
This last requirement become$ > z,, wherez, is a constant and ' uu '
represents the maximal touchdown velocity (to avoid damage to the
landing gear). The subscript 0 5 denotesz 0 (ground). This for the functionl: X ;0 R. An implicit representation of
condition thus readé sin ~ z,. In summary, the reachable set is obtained:
gv Vmin faster than stall speed Vt X XJx; t 0
Parameters: Vimax slower than limit speed
= Vsin z, limited touchdown velocity The set-valued control synthesized from this calculation is
© <0 monotonic descent 7)
. u x;p argmaxp’ fx;u 9)
T Tige thrust at idle uu
Inputs:

. full range available . . .
mine max ¢ It is “set valuet because the argument maximum (argmax) is not

necessarily unique.
. Analytically solving (8) for agenerd} x andf x;u is likely to
Safety Analysis be impossible. Computational algorithms are complicated by the fact
The state bounds described in the previous sectifinedsafe that, even for smootld, x andf x;u , the solutionJ x;t can

flight envelopes for the different typesfbght conditions in which develop discontinuities in its derivatives afieite time and hence
the aircraft operates. The states in these envelopes are not necessarfi§ase to solve (8) in a classical sense. The appropriate weak solution
controllable, i.e., it might not be possible to maintain the aircraft in 0f (8) in this case turns out to be the viscosity solution [7], and level
the flight envelope from any of these states. (Note that the word Set algorithms [9] are numerical techniques developed to compute
controllable is used in a nontraditional way here and throughout the such solutions. A set of high-resolution schemes [3] has been
article. By saying that a state is controllable, it is understood that it isdeveloped based on novel numerical techniques [10,11] to compute
possible to keep it inside the safety set. This property is sometimes) X; t , and hence the reachable set, very accurately.
referred to asiable [12] or control invariant [15,30].) For example,
an aircraft traveling just above stall speed and already at a steeComputation of the Optimal Input
negativeflight-path angle might inevitably stall or start to descend  The gptimal inputi x at a given state represents a choice of
too quickly. Thus, itis necessary to determine what subsets of thesgnat will maximize the Hamiltonian at that poiat The physical
envelopes are actually controllable given the input authority jnterpretation ofu x is thus as follows: For a point inside the
available to the pilot or autopilot. Because the nonlinear dynamics of reachaple set, it is known from reachability analysis [3] that a
the model (1) make analytic determination of the controllable subsetsyajectory starting inside the reachable set will lead to the target set (7)
impossible, a previously developed computational algorithm for \yhjle maintaining the stateinside the envelope (6) provided the

finding controlled invariant sets for this problem is used [3]. optimal controlu x is applied to the system along the trajectory.
Note, however, that it is sfifient to apply the optimal control to the
Computation of the Reachable Set system on the boundary of the reachable set, which therefore enables

Given some dynamically evolving system and some set of a priori the synthesis of less restrictive controllers (thus lealentpility for
unsafe states, the (backward) reachable sefiisedeas the set of all optimization of otheflight parameters inside the reachable set). The
system states that ready in time t. For the autoland system, in ~ word “optimal’ thus refers only to the maximality of the
which the model is extended to several modes with different Hamiltonian. Note that no cost functional is optimized explicitly in
envelopes and dynamidg, will represent, in each discrete mode, the present case, though an interpretation of optimality can be given
the region outside the aerodynanflight envelope. If a systes in terms of maximization of the distance between the state and the
dynamics are ifiuenced by inputs, these inputs may either try to boundary of the envelope at any given time (see [3] for more detail).

drive the state toward or away from the unsafe set; for the airplane The computation of the optimal input x is, in general,
autopilot the inputs (andT) will do the latter. extremely expensive because it is a nonconvex optimization

Computing the reachable set in a discrete system withite problem, which therefore requires exhaustive search on the domain
number of states, and hendérdte number of possible transitions, is ~ Of interest. In the present case it would require maximieirayer
a straightforward but possibly time consuming task of enumeratingthe ;T space. However, for this particular model, the optimization
all the states that have a path to the target set. Computing reachabilitproblem can be reduced to checking six points, which is
for a continuous system is a much mordidifit undertaking, for computationally tractable. The case in which the input is restricted to
example, how should the uncountably many states in any nontrivial 0: max  0; Tmax IS investigated. The case in which negative
unsafe set be represented? angles of attack are considered is obtained by slightfinations of

An algorithm for computing the reachable sets of continuous the method shown next [31].
systems with nonlinear dynamics was developed based on a time- Proposition 1: The optimal input u x £ 7
dependent HJ PDE [3]. L¥tbe the continuous systésrstate space,  argmax, yp' f x;u isneverintherange ;T mint max O;
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Fig. 4

Tmax - IN0therwords, one of thetwo inputs T is always extremal.

(The notationa; b 2 a; b denotes the open interval betweeand
b. Thisis sometimes denotedat b , but this would lead to confusion
with other notation of this paper. Note that in the formufinitegu ,
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Flight envelope W, in each mode (gray). Controlled set W within each mode (dark), with no switching allowed.

variation of this algorithm suitable for successiviations oflaps
for a landing DC9-30 is now presented.

Physical Problem and Hybrid Model

the dependency of the costate on variables has been omitted for |, the process of landing described in the preceding sections, the

simplicity of the dénition.)

Proposition 2: The optimal input ;T is found among the six
following values: 0;0, O0; T » max; 0 max; Tmax s

1; Tmax » @and  5; Thay , Where ; and , solve a quadratic and a
transcendental equation, respectively, shown in the Appendix.

The proofs are presented in the Appendix.

Computation of the Controlled Envelopes
Consider the aircraftin a given mode (e.g., in a given portion of the

landing). The numerical values of the parameters in the dynamics (1

can be computed. L&V, be the safdlight envelope in this mode,
and let W§ be its complement. To determine the maximal
controllable subsat/ of W, setV, WS§, and run a reachability

computation in which the inputs attempt to keep the system away

from V, (or equivalently, withinV,). The reachable set typically
converges to éxed point:V t V ast . In that case, the
largest controllable subset of the envelope is the complement of th
fixed poinWW V€. Anexample is shownin Fig. 4. IntHigure, the

dark setigV for each of the corresponding modes, and the gray setis
W,. The controlled setis the set of points which can touch the ground

safely withoutlying out the box while staying in that mode. As can
be seen on the left subplot, in the mdie(unddlectedflap and
slats), this setis bounded in height, which means thatitis not possibl
to land safely in this mode. Only three modes are represented her

the two transition modes are omitted because the pilot has no

switching control while the system is in these modes.

Flap Deflection: Hybrid Reachability

aircraft successively félects theflaps and slats from 0 deg (clean
wing) to the maximal déection. The 0 deg modes are alternatively
labeledOu (for undediected) orOr (for retracted). Each of these
deflection angles as well as the transitions between them is associated
with different envelopes as well as operating conditions. Thus,
transitioning from one cdiguration to another might drive the
system into an unsafe state. The following question is now of interest:
starting from a given position in space (altitude) with gifieght
conditions (speedlight-path angle, anflap ddlection) and with

)ﬁxed thrust, is there a switching policy (i.e., a set of succefispe
d

dlections/retractions) for which there exists an input (angle of
attack) able to bring the aircraft safely to the ground?

The usual landing procedure requires thigedéion of theflaps to
be increasing in angle. This is modeled with a hybrid automaton,
shown in Fig._5. The intermedidfiap ddlection is 25 deg. The (slat)
retracted state is denoted withthe (slat) dfected state is denoted

ith d. There are three possible wing €igarations: 0, 25, and

0 deg déection. The lift codfcients for these modes are
represented in Fig. 2. The safe set for these three modes is generated
according to the preceding section. For the transition from one mode
to another, the lift is approximated by the mean of the two values of
the lift (in the two corresponding modes) and the stall angle is chosen

do be the one that is the most restrictive (to have a conservative
capproximation). For example, in moa&d

50d, the coeficient

. atagiven isthemeano€_ for 25 deg andC,

for 50 deg.The . forthis mode isthe minimum of the,,, in
mode25d and |, in mode50d, i.e., 16 deg (see Table 1 or Fig. 2).
The stall speed can then be computed using Eq. (5). Itis assumed that
the time the system has to remaininméde 25d or25d  50d

is 10 s, which is the order of magnitude it takes to achieve half the

In the preceding section, continuous reachable set computationgnaximal ddéection of theflaps on a DC9-30. This implies that in the
for each discrete state were described; in this section, a discussion isybrid automaton of Fig. 5 the switches from m@de 25d to
presented to understand how mode switches should be incorporatethode25d and from25d  50d to mode50d happen automatically
into the design. The ditulty here is to compute the maximal 10 s after the switch to modr  25d and mode25d  50d,
controllable sets given that the switches (and correspondingrespectively. Most of the parameters for the DC9-30 can be found in
dynamics and envelope changes) can occur at arbitrary times. Thishe literature [26,27,32,33]. The previously derived model enables
type of computation would be needed for automaieqgdeiection, the computation of the lift and drag. The values of the numerical
as one needs to know when it is safe to switch mode. A generalparameters used for the DC9-30 arm 60;000 kg,
algorithm has been developed in [15,18] to solve such problems. AT,., 160;000 N, g 9:8m=s?, e 0:84, S 112 m?, and

mode 25d
slats deflected
=25deg

mode 50d
slats deflected
=50 deg

mode Or

mode 25d  50d

slats deflection

slats retracted
flaps: =0deg

flaps deflection

flaps:

flaps deflection flaps:

Fig. 5 Transition diagram from clean wing, no flap/slat deflection (Or), to fully deflected wing (50d).
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Table 1 Summary of flap/slat deflection specific numerical parameter values for the DC9-30

Mode Vslall Vmax max h min max

Or 79:01 m=s 83 m=s 16 deg 0.2 3 deg 0 deg
Or 25d 71:58 m=s 83 m=s 16 deg 0.5 3 deg 0 deg
25d 61:50 m=s 83 m=s 20 deg 0.8 3 deg 0 deg
25d  50d 60:46 m=s 83 m=s 18 deg 1.025 3 deg 0deg
50d 57:75 m=s 83 m=s 18 deg 1.25 3 deg 0 deg

1:225 kg=m?. The lift and drag forces are thus (in dimensional rise to a trajectory that remains within the safe envelope of the
form) controlled mode until it reaches a state that lies within the
controllable envelope of the subsequent mode in which case it is safe
L ;V 686h 42 V2N (10) due to a delayed switch. Note that a state may satisfy more than one of
. . . o 2\y2 these conditions.

DV 27 308h 42 *VEN The controllable subset of a controlled madenvelope is
computed using a slight mditiation of the reactavoid procedure
outlined in previous work [15]. L&V , be the safdlight envelope of
the controlled mode, and Mt"! be the controllable envelope of the
subsequent mode. Tliest condition for safety is represented in the
reach-avoid computation by setting, ~WS§, as would normally be

whereh  C, 0 deg depends on thélap setting. The letter N
indicates that the units are Newtond/(i§ taken irm=s). Asummary
of all constants for the DC9-30 is shown in Table 1.

Hybrid Algorithm done. The difference in areaetvoid computation lies in thavoid’
The modes in Fig. 5 can be divided into three classes according toPF “eScapesetA, which represents the other two safety conditions
the type of their outgoing transition. The simplest is niSdiewhich that become available due to the controlled mode switch. Any

has no outgoing transition and hence is treated by solving (8) withouttrajectories that enter this set may safely switch to the subsc_equent
switches enabled. The controllable subset of the envelope ismode and hence are deemed safe in the controlled mode. In this case,
computed by solving (8) until it converges (after about 15 s of A iSSettoA W™ W, For the reackavoid computation, itis
simulated time). A similar procedure can be run on the other two @ssumed thal, x suchthah  x X Jy x 0 .ThenV t is

main modes (r and 25d) to determine what subsets of their computed according to (8) subject to the additional constraint that
envelopes are controllable without mode switches. To determine the) %; t Ja x forallt. In the two modes of interedir(and25d),
controllable subsets with mode switches enabled, the remainingh€ reachavoid computation achieves faxed pointV, and the
modes are split into two classes depending on whether the switch tgontrollable envelope for these modes is the complement Gktis

the subsequent mode in the sequence is controlled by the pilof?0iNtW V. For the particular sets and dynamics of these two
(mode<r and25d) or timed (the two transition modes). modes, itturns outthat ~ A°¢, for all safe states there exists a safe

A timed mode is a mode from which the system automatically instantaneous switch to the subsequent mode, but that need not be

switchesat t;. Astate V; ;z inatimed mode is safe if both of ~ truein general.

two conditions hold: First, it must give rise to a trajectory that

remains within theflight envelope of the timed mode for all  Results

t  0;ts; otherwise, the trajectory becomes unsafe before the mode The results of the reachability computation are shown in Figs. 4, 6,
switch. Second, the state of the trajectoty att; must be within the and?.

controllable envelope of the subsequent mode; otherwise, the Figure 4 shows the set of controllable states in modezsd, and
trajectory will become unsafe at some time after the mode switch. Let50d without switching (dark), as well as the correspondiigit

W, be the safdlight envelope in the timed mode, andAét® be the envelopes (gray). Thifgure shows the boundary of tHight
controllable envelope for the subsequent mode, which has alreadynvelope as well as the computational resultvigrwhich is the
been computed numerically. The reachability computation for the largest set containedi, such that the pilot can touch down safely.

timed mode then useg, W, W" ¢ as initial conditions. As can be seen from Fig. 4, portionsWf, are excluded fror.
Inputs are used to steer the system away figgn and the There are three reasons for this fact.
computation is run backwards only tog, which is typically short of 1) For low speeds, there is not enough lift/thrust to prevent the
convergence. The controllable envelope for the timed mode is thenaircraft from stalling almost immediately: In the state spdce; z
W Vi©. apointtoo closetothefate V,,;, in W, will notbe able to stay in

A controlled mode is a mode from which the system may switch at W, and will exit this box through thé  V,,;, face.
any time to avoid becoming unsafe. A state ;z in a controlled 2) For steeflight-path angles (closetothe ;, faceinthew,

mode is safe if any one of three conditions hold: First, it may give rise box), the aircraft has too steep dfight-path angle to maintain itin
to a trajectory that always remains within the safe envelope of thethe box: The state space exits the box through the ,;, face.
controlled mode in which case it is safe without switching. Second, it  3) Too close to the ground, with steight-path angle, the aircraft
may be within the controllable envelope of the subsequent mode inis not able to reach thésin 2, subset of the box and touches the
which case itis safe due to an instantaneous switch. Third, it may giveground with too high a vertical velocity.

Ou 25d 50d

" g0
70

4" 60
¥ (degrees) V (m/s)

Fig. 6 Flight envelope W, in each mode (gray). Controlled set W within each mode (dark), with switching allowed.
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Table A1 Optimal input

; T given as a function of the costate p,;p,

T Condition T
0 0; Trnax p;>0 0; Trnax
p: <0 0;0
max 0; Tmax P1COS  max pZ:V sin max = 0 max Tmax
P1COS  max pZ:V sin max < 0 max s ;0
0, max 0 p, >
if "1 0, max ~1;0
if ~1> max 0
if ~1 < e 0;0
P <0 max; 0 or 0;0
O; max Tmax pl < 0 pZ > 0 max; Tmax
P1 >0 P2 <0 3 Pmax
P1 <0 P2 <0 max 1 Tmax or O; Tmax
p;>0p,>0
if @H=@ 0Ty = 0 0 Trnax
ifH=0 .1 =0 0; Trnax
if 0H=@ 7, OH=C 1. <O ~2 Tmax
p’ fxu P1 T cos D ;V mgsin P2 Tsin situations and corresponding optimal inputs. Thefjoation for
' m ’ mv these results is as follows.
L :V mgcos psV sin For the cases where is fixed (thefirst and second rows of
' Table Al), the only term of interest im is given by
(A1) p, cos p,=V sin  T=m . Clearly, for max as well as
. o o for 0, if p;cos p,=V sin T=m >0, T  Tna:
whereu ; T . The optimality condition reads otherwiseT 0.
T fxu T Ofxu oS sin ForT 0, one can rewrith x;p as
0p a0 op 3 P1 = pzmv 0
1 hxp 2L ,h ¢ V2 D, h ¢ 2V2
@p’ fxu @p’ fxu Tpysin - p @D ;V mv
Gu, ar m m 0 which is a quadratic in. The constantk,, Dy, , ¢, andh can be
p,T cos p, GL ;V easily related to the model through Eqs-4R If p, >0, the
mv mv @ 0 maximum occurs between the two zeros of the quadratic:
A2
(A2) 1 Lop, -
From (A2), the necessary conditions on the domain interior can be e Vp,
computed:
Because the parabola is upside down, {f<0, 0; if
tan w . 1 _0; max » . 1 and if 17 max max* I_f P1 < 0, the
p, ' situation is much simpler because the parabolais right-side up, and so
1 V@D v depending on the location of in 0; . Oor max-
T PVED n it PV Ly (A3) ForT T ONe wants to solve for
1 pV=p, 2 P2 0@ P2 g :
@h P1 - D P2 L
L \Y, = — Tsin — —= Tcos — 0 (A6
g— tan ! % Y @ m [0 mV 0 (A6)

Using the fact that, for this particular model of lift and diag,; V
isalinear functionof andD ;V isaquadratic function of, itcan

be checked quite easily that the eigenvalues of the Hessian matrix arg?

given by

8 s 9
<@2D 2 2 2=
e ? sin :

2D
%—2 \ (A4)

p_
2m =

where the dependence orhas been omitted whendisappears in

There are four cases: Thest case ip; > 0 andp, <O0. Itis easy to

see thatdh=@ 0, which means that max- conversely, if
<0andp; >0, 0. For the two remaining cases, itis needed
compute
1
¢h 1 D Py
07 P T cos K p: mstm

from which it can be seen thatpf <0 andp, <0, thenh x;p
cannot have a local maximum; therefore, 0, or max- The

the differentiation. It can be easily checked that the two eigenvaluedast casep, > 0 andp, > 0, is more dificult:h x; p can eventually

are of opposite sign and that theref@e f x;u can never be
extremal at ;T . The extremum op™ f x;u is thus on the
boundary of the domain.
Proof of Proposition 2: In Eq. (A1),
. P P2 :
hx;p : = Tcos —= Tsin
P mv

D ;V  mgsin

L ;V  mgcos

istheonly partoH x; p thatdependsontheinput.ind ;T ,

one needs to udeinstead oH. Table A1 summarizes the possible

have alocal maximum beca@®h=@ 2 <0. Inthatcasedh=@ isa
decreasing function of . Thus if @h=@ 0 <0, 0; if
@h=@ o >0, 0 as well. The remaining case is when they
have opposite sigrth=@ o@h=@ o < 0. In that case, one
needs to solve the transcendental Eg. (A6) numerically, and the
solution is called ,.

Corollary 1: Callp  p;; p2; P3; the costate of the system. To
solve eficiently for the optimal input, ip; >0 andp, >0, solve
Eq. (A6) numerically for , and compare the six possible cases of
Proposition 2. Otherwise, compare only fhe possible cases of
Proposition 2 (no ,).
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