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numbers (tied to human verification farms) reportedly cost
less than $0.5 per unit [32], [5]. In addition, there is a fixed
cost, e.g. the hardware required for generating the attacks.
Following the attack on Waze [34], it is possible to emulate
Android phones on a computer. Based on the following study
[13], an attack on a fleet of Internet-connected autonomous
vehicles requires the analysis of the hardware of one vehicle
to be able to gain remote access to other vehicles of the
fleet. Hence, the fixed cost of attacking MaaS systems is
independent of the fleet size and the rate of attacks.

Hidden cost of attacks: The hidden costs are arguably
much higher than the explicit costs. For current ride-sharing
systems such as Uber and Lyft, suspicious (or malicious)
accounts can be detected and blocked easily, along with its
associated phone and credit card numbers. Buying phone
and credit card numbers on the black markets has a risk
of being caught by law enforcement agencies. These hidden
costs can be modeled as βhidden = P (detection)×Penalty i.e.
a probability of being detected times the penalty of being
caught. Hence, more efficient law enforcement and crimes
detection can achieve a higher level of security by increasing
P (detection) and the Penalty. It is worth noting that some
taxi companies, e.g. Taxis G7 in France (http://www.
taxisg7.fr/), does not require the creation of a PIN
verified account to make a request, hence P (detection) = 0
and the only (explicit) cost is the call ($.16/min). Hidden
costs also include the working time necessary for designing
DoS attacks. The cost of labor can be high and the number
of hours necessary for designing an attack is an increasing
function of the level of protection of cyber-physical systems
against security breaches.

Gain for the attacker: Reasons for DoS attacks
are multiple, e.g. extortion, blackmail, expression
of anger and criticism, punishment (for refusing
an extortion demand), see: zeltser.com/
reasons-for-denial-of-service-attacks/.
Because of the wide variety of motives, the benefits should
be estimated case by case. In the case of anti-competition
practice in two-sided networks (e.g. Uber and Lyft), the
gains for DoS attacks can be enormous since successful
platforms enjoy increasing returns to scale [29]. The high
costs and high benefits of attacks on a large-scale MaaS
system justifies the need of a business model for the attacker
to make rational decisions.

C. Controlling availabilities

In this experiment, we find the minimal cost of attacks
such that the resulting availabilities match an arbitrary set
of availabilities ai for i ∈ S, such as the “Cal” logo,
see Figure 4a. Assuming a balanced MaaS system, we first
balance the network using the methodology of [36], i.e.
solving the MAP (45)-(47) with the availabilities uniformly
equal to 1 and with an objective that minimized the number
of re-balancing vehicles (54). This yields a total rate of 2,200
re-balancing vehicles per hour. We then compute the attack
strategy on the balanced network by solving the MAP for
different attack radii. With unlimited attack radius, injecting

only 800 Zombies per hour achieves the availability pattern
encoded in the “Cal” logo. Assuming that a unit of attack
is $5 (current cancellation for a Uber/Lyft ride), only $4000
per hour is sufficient to deplete the network following this
pattern. With limited attack radius (routing only allowed
between stations i and j within 15 blocks from each other
in terms of Manhattan distance), a higher rate of attack is
needed to reproduce the logo, see Figure 4d.

D. Minimizing availabilities

To avoid numerical difficulties related to the large dis-
parities in customer arrival rates, we cluster adjacent blocks
together such that the minimum aggregated arrival rate at a
station is 30 customers per hour, resulting in a reduction
to 331 blocks. We then balance the network and apply the
proposed block-coordinate descent algorithm for solving the
OAP with an objective minimizing the customer time usage
in the network, i.e. (12) with wi =

∑
j φiαijTij . The block-

coordinate descent is given by Algorithm 1.

Fig. 5. Network Simulation Results. A simulation is run with 2650
taxis in a Jackson network. After 1 hour of balancing, the network
is attacked (following a strategy given by a solution to the OAP). The
budget of attacks is 3000 requests per hour, corresponding to 19%
of the total rate. The figure shows the passenger loss in log-scale per
station over (a): 1 hour of balancing, (b): 1 hour of attacks. (c) shows
the total number of customers lost over time. The total cumulative loss
is slightly above 2000 passengers one hour after the start of the attacks.

We do not set a limit on the radius of attacks and apply
the descent method for values of the budget b of attack rate
between 100 and 10,000 with the weight p of the `1-penalty
equal to 0.1 for b ≤ 1000 and 0.01 otherwise. The total



2325-5870 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2612828, IEEE
Transactions on Control of Network Systems

customer and balancer arrival rates remains unchanged on
the reduced network, with 10,600 and 2,200 vehicles per hour
respectively, hence the total attack rate accounts for 0.8% to
44% of the total rate (all three types of passengers). Initializ-
ing with uniform Zombies arrival rate throughout the network
and uniform distributions for the routing probabilities, the
OAP gives an attack strategy sending Zombies to several
spots around the center of Manhattan, see Figure VIII-Ea and
b. In equilibrium, these target regions have high availabilities
while the rest of Manhattan has very low availabilities. These
results are similar to the analytical ones in Section VI, where
it was proved that the optimal attack strategy is one that
sends all the vehicles in a single destination station (see
Theorem 1).

E. Network simulation

Solving for the attack rates using the OAP gives very
low objective values, with a loss of customer time usage
from 60% to 100%. This surprising efficiency is in fact the
asymptotic behavior of the system under attacks, where most
of the vehicles get blocked in the center region because
the re-dispatch process does not send the vehicles in other
parts of the network in reaction to the attacks. To account
for the transient state, we run a simulation of the Jackson
network used for our model with 2500 taxis (average number
of taxis in the area at the time of the day used for our
parameter inference). We record the number of customers
lost for one hour and subtract from this the base rate of
loss when the network is balanced. One run of a Jackson
network simulation is presented in Figure 5 for a budget of
3000 attacks per hour. Slightly above 2000 passengers are
lost after one hour of attacks. This gives the seventh sample
point in Figure VIII-Ec. Figure VIII-Ec and VIII-Ed show the
results of our analysis. Assuming that the cost of an attack is
$5 (the cost of canceling an Uber/Lyft ride) and the gain of
the attacker is $10.75 (the average cost of a ride in the area
estimated from our data-set), Figure VIII-Ec shows that it is
not economical to attack with more than 5000 Zombies per
hour. From this, we can deduce that a cost of attack greater
than $15 protects the MaaS system against attacks. This can
be generalized to a cost of attacks being approximately 1.5
times higher than the gain from incurring passenger loss.

IX. CONCLUSIONS AND FUTURE WORK

We described an analysis framework for quantifying the
vulnerability to MaaS systems to DoS attacks. The Jack-
son network model enables to formulate a mathematical
program for attack strategies that maximize the passenger
loss in equilibrium. The strategy is then implemented on a
network simulation to dynamically estimate the passenger
loss incurred by the attacks. We then present a cost-benefit
analysis applied to a case study in Manhattan. In the context
of anti-competition practice, it is demonstrated that DoS
attacks costing more than $15 per unit protects the MaaS
system. The present work can be refined by, e.g., designing
an optimization program directly maximizing the transient
losses over a short time horizon, relaxing the assumption

Fig. 6. Optimal Attack Rates and Routing. (a) and (b): The attack
rates and routing probabilities for a total budget of 2000 Zombies per
hour are showed in the same style as in Figure 4, with an unlimited
radius and 3km (9 squares) radius respectively. (c): Passenger/financial
loss as a function of attacks from 10 simulations of the Jackson network
(each one associated to a given budget and a strategy computed from
the OAP). The vertical scale on the left shows the rate of passenger loss
and the one on the right the financial loss assuming that a passenger
spends $10.75 on an average. The red line denotes the price of attack
(assuming $5/unit) against the budget. If 100% of the loss is gained by
the attacker, then the red region is financially beneficial for the attacker.
The red line shows that an attack costing $5/unit (its slope) incurs a
maximum loss of $22,500/hour for the MaaS system. (d): Maximum
financial loss for the MaaS system as a function of the cost of one unit
of attack, obtained from (c). A cost of attack above $15 protects the
system.

of infinite capacity stations, and proposing countermeasures
such as an anomaly detection algorithm.
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APPENDIX

Proof of Lemma 1: By assumption, the probabilities αij
constitute an irreducible Markov chain. By equation (6), the
probabilities rij lead to an irreducible Markov chain as well.
The {ai}i vector satisfying equations (20) is proportional to
the steady state distribution for the transition probabilities
{rij}ij and by the Perron-Frobenius theorem, it is positive
[24]. Finally, the constraint ak = 1 completely fixes the
vector {ai}i. �

Proof of Theorem 1: The balance equations before attacks
are: ∑

j 6=i

ajϕjδji = aiϕi ∀ i ∈ S (55)

After attacks, the equations can be written as:∑
j 6=i

ãj(νjκji + ϕjδji) = ãi(νi + ϕi) ∀ i ∈ S (56)

Given (25), the above equation at index k is:∑
j 6=k

aj
α

(νjκjk + ϕjδjk) = νk + ϕk (57)

1

α
=

νk + ϕk∑
j 6=k aj(νjκjk + ϕjδjk)

(58)

We first maximize α with respect to the routing probabilities
{κij}ij , which is clearly achieved when κij satisfies the
policy (28). As a result, equations (56) combined with (25)
and (28) become:∑

j /∈{i,k}

aj
α
ϕjδji+ ϕkδki =

ai
α

(νi + ϕi) ∀ i 6= k (59)

Multiplying by α and subtracting (56) on both sides:

ϕkδki(α− ak) = aiνi ∀ i 6= k (60)
α = ak + aiνi/(ϕkδki) ∀ i : δki > 0 (61)

From (60), νi is proportional to δki/ai for all i 6= k, thus

νi∑
i6=k νi

=
δki/ai∑
j 6=k δkj/aj

∀ i 6= k (62)

Plugging the above expression into (61)

α = ak +

∑
i6=k νi

ϕk
∑
j 6=k δkj/aj

(63)

Hence α is maximized when
∑
i6=k νi = b, setting {νi}i∈S

to follow policy (27) (using (62)). We verify that the policy
derived above is feasible given (55). Finally, we want α ≥ 1,
which implies (26). �

Proof of Theorem 2: Suppose b > 0 (otherwise there is no
attack). Let (ai, νi, κij) be a feasible solution of the OAP
such that

∑
i∈S νi < b. We show that it is not optimal. We

combine the Zombies to the real and re-balancing passengers:

ϕ̃i := ϕi + νi (64)

δ̃ij := (δjiϕj + κjiνj)/(ϕi + νi) (65)

b̃ := b−
∑
i∈S

νi > 0 (66)

Then applying policy the SDAP with ϕ̃i, δ̃ij , b̃, ai and k
such that ak = 1 decreases the ai for i 6= k by a factor
α > 1 (using (29) and the assumptions that b, ϕk > 0) Since
the wi’s are positive by assumption and the ai’s are positive
from Lemma 1, the objective decreases by a positive amount.
Let us denote ν̃i and κ̃ij the resulting attack policy. Then,
the combination of (νi, κij) and (ν̃i, κ̃ij) given by ν̃i + νi
and (κ̃jiν̃j + κjiνj)/(ν̃i + νi) is still feasible for the OAP
and decreases the objective by a positive amount. �

Proof of Theorem 4: The following change of variables

xij := νiκijai ∀ i, j (67)

converts the MAP into the above program with {si}i∈S given
by (48) and νi =

∑
j 6=i xij/ai as a result of the change of

variable. This problem is feasible because the capacity on
each edge is unbounded and the source flows sum to 0:∑

i

si =
∑
i

aiϕi −
∑
i,j 6=i

ajδjiϕi = 0 (68)

Therefore, we can find the minimal-cost attacks that
achieve any arbitrary availabilities. Finally, if x?ij minimizes∑
i,j xij/ai then ν?i given by (52) minimizes

∑
i νi, and

feasibility of κ?ij given by (53) can be checked, hence
optimality of ν?i and κ?ij . �


